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ABSTRACT

Computer Numerical Control (CNC) machining is a subtractive manufacturing
technique that removes layers of material from a blank or workpiece to create a specific
product. With increasing global competition, minimizing downtime during
production is essential to maximize machine availability and productivity. This study
investigates the application of machine learning models, specifically Extreme Gradient
Boosting (XGBoost) and Random Forest (RF), to forecast CNC machine downtime
from multiple failure sources. The study uses data collected from 16 CNC machines at
Company A in Malaysia over an extended period. The data contain key variables for
each downtime event, such as machine ID, failure type, start date/time, end date/time,
and downtime duration in minutes. Failure types are categorized into several groups,
including mechanical, electrical, and tool malfunctions. After hyperparameter tuning,
the XGBoost model outperformed the RF model, achieving a Mean Squared Error
(MSE) of 0.4017, Root MSE (RMSE) of 0.634, and Mean Absolute Error (MAE) of
0.470 on the test set, while the RF model yielded higher errors, with an MSE of 1.2654,
RMSE of 1.125, and MAE of 0.943. These results demonstrate the superiority of the
XGBoost model over RF in predicting future CNC downtime, as indicated by its lower
prediction errors. Future work should focus on refining the model with larger, more
diverse datasets and exploring its integration into Al-based decision support systems
to enhance machine availability and operational efficiency.

Keywords: Computer Numerical Control (CNC), machine learning, predictive
maintenance maintenance, manufacturing

ABSTRAK

Pemesinan Computer Numerical Control (CNC) merupakan teknik
manufaktur subtraktif yang menghilangkan lapisan material dari bahan awal
atau benda kerja untuk menghasilkan produk tertentu. Seiring dengan
meningkatnya persaingan global, meminimalkan waktu henti (downtime)
selama proses produksi menjadi sangat penting untuk memaksimalkan
ketersediaan mesin dan produktivitas. Penelitian ini mengkaji penerapan
model machine learning, khususnya Extreme Gradient Boosting (XGBoost)
dan Random Forest (RF), untuk memprediksi waktu henti mesin CNC yang
berasal dari berbagai sumber kegagalan. Penelitian ini menggunakan data

yang dikumpulkan dari 16 mesin CNC di Perusahaan A di Malaysia selama
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periode waktu yang cukup panjang. Data tersebut mencakup variabel-
variabel utama untuk setiap kejadian downtime, seperti identitas mesin, jenis
kegagalan, waktu mulai, waktu selesai, dan durasi downtime dalam satuan
menit. Jenis kegagalan diklasifikasikan ke dalam beberapa kategori, termasuk
kegagalan mekanik, listrik, dan perkakas. Setelah dilakukan penyetelan
hiperparameter, model XGBoost menunjukkan kinerja yang lebih unggul
dibandingkan model RF, dengan nilai Mean Squared Error (MSE) sebesar
0,4017, Root Mean Squared Error (RMSE) sebesar 0,634, dan Mean Absolute
Error (MAE) sebesar 0,470 pada data uji. Sebaliknya, model RF menghasilkan
tingkat kesalahan yang lebih tinggi, dengan MSE sebesar 1,2654, RMSE
sebesar 1,125, dan MAE sebesar 0,943. Hasil ini menunjukkan keunggulan
model XGBoost dibandingkan RF dalam memprediksi downtime mesin CNC
di masa mendatang, sebagaimana tercermin darinilai kesalahan prediksi yang
lebih rendah. Penelitian selanjutnya disarankan untuk menyempurnakan
model dengan menggunakan dataset yang lebih besar dan lebih beragam,
serta mengeksplorasi integrasinya ke dalam sistem pendukung keputusan
berbasis kecerdasan buatan untuk meningkatkan ketersediaan mesin dan
efisiensi operasional.

Kata kunci: Computer Numerical Control (CNC), machine learning,
pemeliharaan prediktif, manufaktur

Introduction

CNC machining is a fundamental component of modern manufacturing and supports key sectors
such as automotive, aerospace, medical, and oil and gas (Keller et al., 1982; Newman et al., 2012) By
automating the production of mechanical components through pre-programmed CAD models, CNC
machines provide the precision, consistency, and flexibility needed for efficient mass production (Soori
et al., 2023, 2024). Their role continues to grow as manufacturers adopt advanced technologies to remain
competitive in an evolving industrial landscape (Ye et al., 2018)

CNC machine maintenance is critical to ensuring the reliability and productivity of these systems.
Three primary maintenance strategies are commonly used: reactive, preventive, and predictive
maintenance (Muchiri et al., 2014; Roosefert Mohan et al., 2021). Reactive or breakdown maintenance
involves repairing machines only after they fail, often leading to costly downtime and potential damage.
Preventive maintenance takes a more proactive approach by scheduling routine servicing based on a
fixed timeline, regardless of the machine’s actual condition, reducing breakdowns but sometimes
resulting in unnecessary maintenance. The most advanced strategy, predictive maintenance, uses real-
time data and analytics to monitor machine conditions, predicting failures before they occur. This
approach minimizes downtime and costs by addressing issues, if necessary, based on actual wear and
usage.

Despite advancements in maintenance strategies, unplanned downtime, unexpected machine
stoppages caused by malfunctions or failures, remains a critical challenge in manufacturing (Cochran et
al., 2001). Such interruptions reduce overall equipment effectiveness (OEE), slow production, delay
deliveries, and generate substantial financial losses, with some manufacturers reporting costs of up to
$260,000 per hour (output.industries, 2024; Xiao et al., 2021). The issue is especially severe in high-mix,
low-volume environments where operational flexibility is essential (Jauregui Becker et al., 2015).

These significant operational and financial risks underscore the need to accurately understand and
predict downtime occurrences. Analyzing patterns in downtime frequency, duration, causes, and trends
provides insights into dominant failure modes, supports resource prioritization, and improves asset
management decisions (Muchiri et al., 2014). However, reactive approaches based solely on historical
data struggle to anticipate random failures, such as sudden component breakdowns or power
disturbances, making them inadequate for preventing costly disruptions (Alaswad & Xiang, 2017).

To address this issue, incorporating predictive analytics, real-time monitoring, and sensor-based
systems can provide timely alerts and early warnings of potential issues, preventing downtime before it
occurs (Lee et al., 2014). Maintenance strategies shift from reactive firefighting to proactive risk
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management by estimating the likelihood of failures in advance. Predictive modeling techniques,
including machine learning and deep learning, have recently gained significant traction for their ability
to enhance predictive maintenance across various industries (Hussain & Jan, 2019; Wan et al., 2019).

Predictive maintenance methods commonly include both classical approaches and advanced
machine learning techniques. Time series forecasting techniques, such as autoregressive integrated
moving averages (ARIMA), have traditionally been used to predict downtime and failure events based
on historical data (Alaswad & Xiang, 2017) and (Traini et al., 2019). Pavlyshenko, (2019) mentioned that
ARIMA for prediction model is closer to results of neural networks, which has the added advantage of
less memory space and computational time. However, ARIMA's linear assumptions limit its effectiveness
in handling the nonlinear and noisy data typical of CNC operations (Ozel & Karpat, 2005; Sun et al., 2006).
Complex interrelationships, such as the non-linear effects of tool wear and cutting conditions, often
require more sophisticated models.

This is where machine learning (ML) comes into play, which offers significant advantages in
predictive maintenance by addressing the complexities that classical approaches struggle to capture
(Pimenov et al., 2023; Soori et al., 2023). ML, as a branch of artificial intelligence (Al), allows machines to
learn from data, identify patterns, and make decisions without human intervention. ML algorithms can
capture complex relationships between machine conditions, operational parameters, and failure modes,
which lead to more precise predictions of equipment failures and maintenance needs (Soori et al., 2024).
This capability is important for enhancing CNC machine operations, where real-time data analysis can
help optimize processes, reduce downtime, and improve overall efficiency.

For example, Support Vector Machines (SVM) are used for condition monitoring and predicting
the remaining useful life of machines. At the same time, Long Short-Term Memory (LSTM) networks
handle time-series data effectively, especially in capturing long-term dependencies in nonlinear datasets.
Other algorithms, including neural networks (Widodo & Yang, 2011), recurrent neural networks (RNN)
(Malhotra et al., 2016), convolutional neural networks (CNN), and tree-based ensemble methods like
Random Forest (Zhou et al., 2019), excel at processing noisy and non-linear time series data. Overall, data-
driven approaches like deep learning have demonstrated superior performance to traditional model-
based methods in predictive maintenance tasks, particularly in minimizing human intervention and
optimizing machine performance.

However, there is still a gap in the existing literature on the lack of comprehensive, data-driven
models that can forecast overall CNC machine downtime arising from diverse failure sources. Prior
studies to date have focused on modeling specific failure modes, such as tool wear (Abellan-Nebot et al.,
2012) or software crashes (Soori et al., 2024) using domain-specific approaches. While these studies
provide valuable insights, unplanned CNC downtime often stems from various complex and interrelated
causes, including mechanical breakdowns, electrical faults, and operational errors (Djurdjanovic et al.,
2003). Each failure type may exhibit distinct patterns and trends not captured by models designed to
predict individual failure modes (Jantunen, 2002).

There is a need for ML techniques capable of handling heterogeneous industrial failure data to
predict overall CNC downtime. Such models would provide a more comprehensive view of multiple
failure types, allowing for more effective maintenance planning and overall uptime improvement.
Current models optimized for single failure modes fail to address the broader, interconnected nature of
CNC machine failures.

Furthermore, while many studies have explored predictive maintenance for CNC machines, the
rapidly evolving manufacturing environment and the complexity of machine operations require
continuous exploration and refinement of ML algorithms (references). Downtime patterns vary based on
machine age, usage intensity, and operational conditions. Advances in ML algorithms offer opportunities
for improved accuracy, faster computation, and better generalization across diverse datasets. Research
into more sophisticated and flexible models is essential for enhancing machine reliability and reducing
production disruptions in real-world applications.

This study addresses this research gap by developing ML models that use heterogeneous
downtime data from multiple failure sources, like mechanical failures, electrical faults, software errors,
etc, to predict aggregated CNC downtime trends. Therefore, this study develops and compares two
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ensemble learning models: Random Forest and XGBoost, to forecast total CNC downtime using
heterogeneous failure data from 16 machines. The contribution is twofold: (1) providing a plant-level
downtime forecasting model that accounts for multiple failure sources, and (2) demonstrating the
superiority of an optimized XGBoost model for industrial downtime prediction.

Method

This study adopts a quantitative approach, utilizing time series analysis and machine learning
techniques to forecast downtime trends in CNC machining operations. The research focuses on predicting
unplanned downtime, a critical issue in manufacturing industries where machine availability is key to
maintaining productivity. The study utilizes secondary data collected from multiple CNC machines at
Company A in Malaysia, consisting of operational and maintenance records over an extended period.,
which contains operational and maintenance records over an extended period. This dataset provides a
comprehensive basis for understanding historical downtime patterns and informing predictive models.
Figure 1 summarizes the systematic methodology, aligning with the standard data science process. The
process begins with data collection and preparation, which involves cleaning, transforming, and
organizing the raw data into a format suitable for analysis. In this case, the secondary data includes
various machine-related variables, such as operational hours, instances of downtime, environmental
factors, and maintenance logs. The data is prepared by removing outliers, handling missing values, and
ensuring consistency across different periods to improve the accuracy of the subsequent analysis

Business
Understanding

Data

Deployment Understanding

Time Series Structuring Train-Test Split
= - Missing V?Iues Label Encoding
Evaluation Data Preparation Imputation
Dealing with Outlier Feature Engineering

Modeling

-------------------------- Random Forest

Xtreme Gradient
Boosting

Figure 1. Research Methodology flow

Data Collection

The secondary data for this study were collected from Company A’s historical CNC maintenance
records, covering approximately 14 months, from January 2022 to early March 2023. The process of
downtime data collection is illustrated in Figure 2. The dataset, obtained with permission from the
company’s technical support team, includes detailed reports of downtime events across 16 CNC
machining assets in the facility.

The dataset captures key variables for each downtime event, such as machine ID, failure type, start
date/time, end date/time, and downtime duration in minutes. Failure types are categorized into several
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groups, including mechanical, electrical, and tool malfunctions. Data was collected daily, with downtime
incidents consolidated into a single record per day. This level of granularity enables a comprehensive
analysis and model development aimed at accurately forecasting future downtime events.

The dataset contains 458 daily records, with 65 instances of CNC machine downtime. Each record
specifies the downtime duration for that day and includes details of any logged failure events. Days
without downtime incidents were also recorded, indicating zero downtime hours. This complete dataset
allows for a thorough analysis of CNC downtime patterns over 14 months, providing valuable insights
for predictive modeling.

s

-w
q
Machine Operator scan QR, Technician record .
Stop Fill in a form downtime details Machine Start

' 'y

Repairing Downtime
Process

Technical Support view the

form, dispatch a technician recorded in Excel

Figure 1. Downtime Data Collection Process Flow

TIME DOWN TIME
MACHINE NO. PROBLEM TYPE START START JOB DOWN  REPAIRING
ﬂ DOWN REPAIR COMPLETE | TIME nme  'DLE TIME
1/7/2022 CNC 1 SLANT LEADS 8:00:00 AM 8:00:00 AM 8:10.00AM 0.17 hrs 017hrs  0.00 hrs
1/7/2022 CNC 11 SLANT LEADS 8:00:00 AM 8:10:00 AM 8:20.00 AM 033 hrs 017hrs 017 hrs
1/24/2022 CNC 5 UNEVEN WINDING 8:0000 AM 80600AM 8:3500AM 058hrs  048hrs  0.10hrs
1/25/2022 CNC 5§ SLANT LEADS 12:45:00 AM  1:00:00 AM 2:00:00 AM 1.25hrs 100hrs  0.25hrs
1/25/2022 CNC 10 SLANT LEADS 1:00:00 AM 3:00.00AM 3:30.00AM 250hrs  050hrs  200hrs
1/25/2022 CNC 5 MECHANICAL 3:00.00 AM 3:00:00 AM 3:45:00 AM 0.75 hrs 075hrs  0.00 hrs
1/26/2022 CNC 4 TOOLING 11:00:00 AM 12:00:00 PM 12:30:00 PM  1.50 hrs 0.50 hrs 1.00 hrs
2/6/2022 CNC 11 SLANT LEADS 91500 PM  9:50:00 PM 10:05:00 PM 0.83hrs 025hrs  0.58hrs
2/8/2022 CNC 1 STRIPPING 1:30:00AM 1:35:00 AM 1:57.00 AM 0.45hrs 037hrs 008 hrs
2/8/2022 CNC 11 SLANT LEADS 1:00.00 AM 1:58:.00 AM 2:10.00AM 1.17 hrs 020hrs  0.97 hrs
2/10/2022 CNC 16 STRIPPING 1:.00.00AM 1:0500AM 1:20.00AM 0.33hrs  025hrs  0.08 hrs
2/10/2022 CNC 13 MECHANICAL 1:00.00AM 1:2000 AM 1:30.00AM 050hrs  017hrs  0.33hrs
2/16/2022 CNC 2 STRIPPING 8:30.00AM 84500AM 9:110.00AM O067hrs  042hrs  025hrs
3/11/2022 CNC 1 STRIPPING 82000 AM 8:25:00AM 9:05:00AM 075hrs  067hrs  0.08 hrs
3/18/2022 CNC 16 UNEVENWINDING | 12:00:.00 PM2:30:00PM_3:20:00PM 333hrs  083hrs  2.50 hrs
3/22/2022 CNC 14 STRIPPING 9:00.00 AM 9:15:00 AM 11:00:00 AM  2.00 hrs 175hrs  025hrs
312412022 CNC 7 SLANT LEADS 80000PM 81500PM 00000PM 00N  075hrs - 025hrs
/2412022 CNC 2 STRIPPING 11:4500PM 123000AM 25000AM “00NS 2330 075hrs

Figure 2. Sample of Manufacturing plant CNC downtime record from January 2022 to early March 2023

Data Preparation

The raw CNC downtime data from Company A’s maintenance records required substantial
preprocessing steps before time series modeling and forecasting (see Figure 3). While containing the
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historical timeline of downtime events, the raw data had several limitations, making it unsuitable for
downtime occurrence predictive modeling without preprocessing:

e Irregularity: The records were unevenly spaced in time, with gaps on failure-free days. This
posed challenges for forecasting algorithms relying on consistent time intervals between
observations.

e Lack of explanatory variable: Only fundamental downtime duration values were captured,
without additional temporal or explanatory variables needed to model failure patterns.

e Structure: Machine IDs and failure types were stored as unintelligible string labels rather than
encoded categorical variables.

e Data leakage: Temporal interrelationships could be exploited if time series splitting was not
done sequentially.

e Non-normality: Downtime duration data was right-skewed, needing transforms for effective
modeling.

To address these challenges and prepare the data for time series modeling, the following critical

preprocessing steps were implemented:

Time Series Restructuring: The raw data contained temporal gaps, which can degrade forecasting
performance. Restructuring into an evenly spaced series ensured consistent intervals between
observations critical for time series algorithms.
Feature Engineering: Additional variables representing temporal cycles and failure intervals
were derived to provide more explanatory power for modeling downtime patterns over time.
Encoding: Converting machine IDs and failure types into numeric categories enabled the models
to recognize these variables' distinct values and patterns (see Tables 1 and 2).
Train-Test Split: Temporal splitting prevented data leakage and overfitting by ensuring the
models were evaluated on unseen future data.
Transformation: Data distributions that do not match model assumptions can reduce accuracy.
Log transforms normalized the raw downtime data to fit the required data normality.

After preprocessing, the engineered dataset had the necessary structure, explanatory variables, and

time-ordered train-test split to enable robust machine learning-based forecasting of CNC downtime.

Table 1. Encoded Problem Type

Problem type Encoded label
Slant leads

Uneven Winding

Mechanical
Tooling
Stripping
Electrical

Red Lead
Damage Air Coil

O 0 N O O &~ W N =

Pneumatic

_
()

Uneven lead length
Wire Scratch

—_
—_

Table 2. Encoded Machine Number

Machine Number Encoded Label

CNC1 1
CNC2 2
CNC3 3
CNC 4 4
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Machine Number Encoded Label

CNC5 5
CNC6 6
CNC7 7
CNCS38 8
CNC9 9
CNC10 10
CNC11 11
CNC 12 12
CNC 13 13
CNC 14 14
CNC 15 15
CNC 16 16

Generating Predictor Using Probabilistic Approach

Two supplementary predictors—machine number and problem type—were introduced using a
probabilistic approach to enhance the forecasting models with additional helpful information for
predicting downtime duration. This step was necessary because the machine number and specific
problem type were only determined once a downtime event occurred and thus could not be known in
advance. To account for this uncertainty, the probability p of downtime occurrence for each machine i
was calculated using Eq .1-3 with the results shown in Table 3:

Number of Downtime

p(Downtime Occurence) = Total Number of Days (D

. .. Count of machine i downtime occurence
p(Downtime Occurence|Machine i) = - (2)
Count of downtime occurrence

Count of machine i downtime occurence with problem j

p(Problem j|Machine i) = (3)

Count of downtime occurrence

Where:i=1,2,...,16andj=1,2,...,11

Table 2. Generated Probability of Machine Downtime Given Machine Number and Problem Type

Machine Number

Prb 1 2 3 4 5 6 7 8 10 11 13 14 16

0.182 0.000 0.000 0.111 0.250 1.000 1.000 0.000 0.600 0.333 0.000 0.000 0.500
0.091 0.000 0.500 0.111 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.167
0.091 0.500 0.000 0.111 0.250 0.000 0.000 0.000 0.000 0.111 0.500 0.000 0.000
0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.667 0.200 0.000 0.250 0.000 0.000
0.546 0.333 0.000 0.444 0.250 0.000 0.000 0.000 0.000 0.222 0.000 0.000 0.167
0.091 0.000 0.000 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.111 0.000 0.000 0.000
0.000 0.167 0.500 0.000 0.000 0.000 0.000 0.333 0.000 0.111 0.000 0.500 0.167
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000
11  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.111 0.000 0.000 0.000

O 0 N N U A W

—_
o
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Model Development

Given the study's focus on comparing machine learning techniques for downtime forecasting, two
prominent algorithms—Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) —were selected
for model development. These algorithms were chosen for their ability to handle complex, nonlinear
relationships in data and their proven effectiveness in predictive maintenance applications.

Ensemble Learning Algorithms

Random Forest

Random Forest (RF) is an ensemble learning method that builds multiple decision trees on
bootstrapped subsets of the training data and aggregates their predictions to produce a final output (see
Figure 4). Each tree is trained on a randomly sampled dataset and uses a random subset of features at
each split, promoting diversity and reducing overfitting. During prediction, the outputs of all trees are
averaged, resulting in a more stable and accurate forecast.

RF is well suited for downtime forecasting because it can capture nonlinear relationships and high-
order interactions inherent in complex industrial data (Genuer et al., 2010). It is robust to noise and
outliers, limits overfitting through controlled tree depth, and enables efficient parallel training (Breiman,
2001). These characteristics make RF a strong candidate for forecasting tasks involving irregular and noisy
temporal patterns.

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Majority Voting / Averaging

Final Result

Figure 4. Graphical Representation of Random Forest (Khan et al., 2021).

Extreme Gradient Boosting (XGBoost)

XGBoost is a tree-based ensemble method that applies gradient boosting to iteratively improve
model accuracy (Chen & Guestrin, 2016) (see Figure 5). Unlike standard boosting, it incorporates strong
regularization—such as shrinkage and tree pruning—to reduce overfitting as new trees are added. The
algorithm also uses second-order gradient information to more efficiently minimize the loss function,
enabling faster and more precise optimization (Mitchell & Frank, 2017) XGBoost offers several
computational advantages, including parallel processing, approximate tree learning for speed, and the
ability to handle missing data natively. Subsampling of both data instances and features further enhances
model generalization. These characteristics make XGBoost particularly effective for time-series
forecasting, where its combination of gradient boosting, regularization, and computational efficiency
consistently yields high predictive accuracy.
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Training set

Features combinations

Predict load

Figure 5. Graphical Representation of XGBoost (Yao et al., 2022).

Model Training

The pre-processed downtime dataset was split into contiguous train and test sets using a rolling
origin scheme to simulate real-world iterative forecasting. The first 80% of the time series was the initial
training set, with the next 20% as the test set.

The Random Forest and XGBoost models were trained on the training data using 5-fold stratified
cross-validation with early stopping to prevent overfitting. In k-fold cross-validation, the training data is
split into k groups or folds. Each fold is held out as the validation set, while the remaining k-1 folds are
used to train the model. Early stopping tracks validation performance, stopping training if metrics worsen
for a defined number of iterations to avoid overfitting the training data.

In addition, a rolling origin evaluation was implemented where the test set is progressively rolled
forward in time. The models are retrained on newly available data at each iteration to simulate real-world
systems where forecasts are generated continuously as new data arrives. Model performance is evaluated
by predicting each test partition. This training approach, through temporal cross-validation, early
stopping, and rolling origin testing, evaluates the models' ability to generalize to unseen data, which is
critical for reliable forecasting performance. It mimics how the models would be retrained and generate
forecasts in an operational environment.

Hyperparameter Tuning (Random Search CV)

The Random Search Cross-Validation optimizer improved both RF and XGBoost models. The
open-source Python machine learning toolkit scikit-learn offers methods for adjusting model
hyperparameters. The complete model optimization procedure employing Random Search CV may be
summed up as follows:

Step 1: A search space is a bounded domain of hyperparameter values.
Step 2: Sample that domain's points at random.
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Step 3: Create a random search instance and fit it to a model using Scikit-Learn. Indicate the number of
cross-validation folds and the number of iterations or possible combinations to try.

Step 4: Get the best parameters and model from the optimizer. Compare the base and top random search
models to see if the random search produced a superior model.

Results and Discussion
The Results

The study compared Random Forest and XGBoost models for forecasting CNC downtime using 14
months of maintenance records from Company A. As shown in Table 4, XGBoost substantially
outperformed RF across all error metrics. Based on these metrics, the Random Forest model performed
better in minimizing forecasting errors for the CNC downtime duration data before tuning. The lower
values indicate that the Random Forest predictions were numerically closer to the downtime duration.

However, upon further diagnostic analysis using learning curves, overfitting tendencies were
revealed in both models. The learning curves plotted model performance on the training set and a held-
out validation set as training progressed (see Figures 6 and 7). For the Random Forest model, the training
MSE stabilized at around 0.5 after 50 estimators, while the validation MSE remained around 2.5 with no
convergence. The XGBoost learning curve showed a similar trend, with the training MSE reaching 0 after
100 iterations but validation MSE stabilizing at a higher value of around 3.5.

These diverging training and validation errors indicate that despite achieving low training MSE,
both models were overfitting the data. They failed to generalize well to new unseen data, necessitating
corrective measures.

Model Optimization

The pre-processed downtime data were divided into sequential training and test sets using a
rolling-origin scheme to reflect real-world forecasting. Hyperparameter tuning was then conducted using
Randomized Search Cross-Validation to reduce overfitting and identify configurations that generalized
well to unseen data.

As shown in Table 4, the tuned XGBoost model substantially outperformed the Random Forest
model across all error metrics. Its lower MAE, equivalent to an average prediction error of under 30
minutes, offers meaningful operational advantages. With more reliable downtime forecasts, maintenance
teams can plan interventions earlier, prepare spare parts in advance, and allocate personnel more
efficiently, reducing the likelihood of prolonged or cascading disruptions. In contrast, the Random Forest
model retained higher error levels and exhibited a wider gap between training and validation
performance, indicating weaker generalization.

Table 3. Model Error Performance Metrics

Random Forest XGBoost
Before Tuning After Tuning Before Tuning After Tuning
MSE 5.858 1.265 6.656 0.402
RMSE 2.420 1.125 2.580 0.634
MAE 1.490 0.943 1.563 0.470
MAPE 1.011 1.754 0.986 0.719

The predicted-versus-actual plot (Figure 10) further illustrates XGBoost’s ability to follow observed
downtime patterns closely, with only a few deviations likely attributable to outlier events. This alignment
reinforces the model’s practical utility: accurate short-horizon forecasts can support proactive scheduling
and improve overall equipment availability in environments where unexpected stoppages are costly.
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Figure 6. RF learning curve before hyperparameter tuning.

56 Learning Curve (XGBoost)

—— Training MAE
Validation MAE
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2 4 6 8 10
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Figure 7. XGBoost learning curve before hyperparameter tuning.
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Figure 8. RF learning curve after hyperparameter tuning.
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Figure 9. XGBoost learning curve after hyperparameter tuning.

Table 4. Predicted and actual downtime duration on the test set

Downtime Duration (Hours)

Date XGB Predicted RF Predicted Actual
2023-01-08 1.01 1.15 1.08
2023-01-13 1.48 2.86 0.92
2023-01-24 0.96 2.01 0.17
2023-02-10 1.05 2.21 0.50
2023-02-16 1.06 1.64 0.75
2023-02-19 0.84 1.25 2.33
2023-02-23 1.01 1.15 1.00
2023-03-05 1.05 1.84 0.67
2023-03-06 1.47 2.40 1.25
2023-03-08 1.17 3.29 2.33
2023-03-09 1.00 1.59 0.85
2023-03-10 0.97 1.02 1.17
2023-03-11 1.02 1.23 0.83

Actual vs Predicted Values

—o= Actual

Values

Figure 10. Predicted vs actual plot.
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Discussion

This study demonstrated that machine learning models can effectively forecast CNC machine
downtime trends when trained on historical maintenance records. The optimized XGBoost model
outperformed the Random Forest model in predicting future downtime duration. XGBoost's superior
accuracy can be attributed to its gradient-boosting approach, which iteratively minimizes errors through
additive expansion. The model’s regularized objective function helps control complexity and prevent
overfitting, while hyperparameter tuning, performed using randomized search, identified the optimal
configuration for the dataset. This combination of boosting, regularization, and hyperparameter
optimization allowed XGBoost to learn downtime patterns from the time series data effectively.

In contrast, the initial Random Forest model exhibited signs of overfitting, as reflected by the large
gap between training and validation errors. This was likely due to the limited size of the dataset and the
absence of early hyperparameter tuning. While the Random Forest model's bagging process creates
highly variant decision trees, this variability can result in overfitting when dealing with noisy training
data. After tuning, the overfitting was reduced, but XGBoost still achieved lower prediction errors,
highlighting the strength of gradient boosting in handling time series forecasting problems involving
sparse and irregular data.

Key downtime trends revealed by this study, such as the right-skewed distribution of event
durations and the top recurring failure types, are consistent with findings from (Abdallah et al., 2016) and
(Lee etal., 2014). However, those studies used traditional statistical forecasting models like ARIMA rather
than advanced machine learning techniques. The stable and generalized performance of XGBoost
underscores its advantage in capturing complex temporal relationships and improving the accuracy of
downtime forecasting.

The practical implication of these findings is that enhanced forecast accuracy can help maintenance
teams intervene earlier, reducing unplanned downtime, preventing cascading delays, and potentially
lowering associated operational costs. In industrial settings where downtime is extremely expensive,
even modest improvements in prediction error can yield significant benefits

One limitation of this study is the relatively small dataset collected from a single manufacturer over
one year. Expanding the dataset to include longer durations and data from multiple manufacturers would
allow for more robust model performance validation and testing. Besides, incorporating more
explanatory variables, such as maintenance history, operating conditions, and detailed failure data, could
improve the models' predictive accuracy. Future research should explore these improvements.

Another limitation is that the study primarily focused on predicting downtime duration without
delving into the specific causes of failures. Failure type prediction or root cause analysis could provide
more actionable insights for targeted maintenance strategies. Additionally, the absence of real-time data
in the current model limits its practical application in dynamic environments where immediate decision-
making is critical. Future studies should explore integrating real-time sensor data and Internet of Things
(IoT) technologies, which could further enhance the model’s applicability and responsiveness.

While this study demonstrates the potential of gradient-boosting models for predicting CNC
downtime trends, the current approach remains in its early stages. With further refinement and larger
datasets, this methodology could contribute to more intelligent maintenance scheduling, improving
machine availability and operational efficiency. However, translating this approach into an Al-based
decision support system for industrial engineers would require significant additional development,
including integration with real-time data and testing in diverse manufacturing environments.

Conclusion

This study demonstrates that XGBoost provides superior performance for forecasting CNC
machine downtime using heterogeneous industrial failure data. Beyond statistical improvements, the
model’s accuracy, particularly its average error of less than 30 minutes, offers practical value for
predictive maintenance. More precise forecasts allow maintenance teams to plan interventions earlier,
allocate technicians and spare parts more effectively, and mitigate the operational disruptions
associated with unexpected stoppages. In manufacturing environments where downtime is costly, even

QOMARUNA Journal of Multidisciplinary Studies 2025, Vol. 3, No. 1, pp. 59-74 71



modest gains in prediction accuracy can significantly improve equipment availability and production
continuity.

Theoretically, this study contributes a plant-level forecasting approach that integrates multiple
failure sources, addressing a gap in prior research that typically focuses on isolated failure modes. The
comparison of Random Forest and XGBoost under a rolling-origin evaluation also provides
methodological insight into the suitability of ensemble learning for downtime prediction in real
industrial settings.

Future work should incorporate real-time sensor data, additional operational variables, and
larger multi-site datasets to enhance generalizability. Overall, the findings highlight the potential of
advanced machine learning models to support data-driven maintenance decisions and strengthen
operational efficiency in modern manufacturing environments.
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