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Computer Numerical Control (CNC) machining is a subtractive manufacturing 
technique that removes layers of material from a blank or workpiece to create a specific 
product. With increasing global competition, minimizing downtime during 
production is essential to maximize machine availability and productivity. This study 
investigates the application of machine learning models, specifically Extreme Gradient 
Boosting (XGBoost) and Random Forest (RF), to forecast CNC machine downtime 
from multiple failure sources. The study uses data collected from 16 CNC machines at 
Company A in Malaysia over an extended period. The data contain key variables for 
each downtime event, such as machine ID, failure type, start date/time, end date/time, 
and downtime duration in minutes. Failure types are categorized into several groups, 
including mechanical, electrical, and tool malfunctions.  After hyperparameter tuning, 
the XGBoost model outperformed the RF model, achieving a Mean Squared Error 
(MSE) of 0.4017, Root MSE (RMSE) of 0.634, and Mean Absolute Error (MAE) of 
0.470 on the test set, while the RF model yielded higher errors, with an MSE of 1.2654, 
RMSE of 1.125, and MAE of 0.943. These results demonstrate the superiority of the 
XGBoost model over RF in predicting future CNC downtime, as indicated by its lower 
prediction errors. Future work should focus on refining the model with larger, more 
diverse datasets and exploring its integration into AI-based decision support systems 
to enhance machine availability and operational efficiency. 
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Pemesinan Computer Numerical Control (CNC) merupakan teknik 
manufaktur subtraktif yang menghilangkan lapisan material dari bahan awal 
atau benda kerja untuk menghasilkan produk tertentu. Seiring dengan 
meningkatnya persaingan global, meminimalkan waktu henti (downtime) 
selama proses produksi menjadi sangat penting untuk memaksimalkan 
ketersediaan mesin dan produktivitas. Penelitian ini mengkaji penerapan 
model machine learning, khususnya Extreme Gradient Boosting (XGBoost) 
dan Random Forest (RF), untuk memprediksi waktu henti mesin CNC yang 
berasal dari berbagai sumber kegagalan. Penelitian ini menggunakan data 
yang dikumpulkan dari 16 mesin CNC di Perusahaan A di Malaysia selama 
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periode waktu yang cukup panjang. Data tersebut mencakup variabel-
variabel utama untuk setiap kejadian downtime, seperti identitas mesin, jenis 
kegagalan, waktu mulai, waktu selesai, dan durasi downtime dalam satuan 
menit. Jenis kegagalan diklasifikasikan ke dalam beberapa kategori, termasuk 
kegagalan mekanik, listrik, dan perkakas. Setelah dilakukan penyetelan 
hiperparameter, model XGBoost menunjukkan kinerja yang lebih unggul 
dibandingkan model RF, dengan nilai Mean Squared Error (MSE) sebesar 
0,4017, Root Mean Squared Error (RMSE) sebesar 0,634, dan Mean Absolute 
Error (MAE) sebesar 0,470 pada data uji. Sebaliknya, model RF menghasilkan 
tingkat kesalahan yang lebih tinggi, dengan MSE sebesar 1,2654, RMSE 
sebesar 1,125, dan MAE sebesar 0,943. Hasil ini menunjukkan keunggulan 
model XGBoost dibandingkan RF dalam memprediksi downtime mesin CNC 
di masa mendatang, sebagaimana tercermin dari nilai kesalahan prediksi yang 
lebih rendah. Penelitian selanjutnya disarankan untuk menyempurnakan 
model dengan menggunakan dataset yang lebih besar dan lebih beragam, 
serta mengeksplorasi integrasinya ke dalam sistem pendukung keputusan 
berbasis kecerdasan buatan untuk meningkatkan ketersediaan mesin dan 
efisiensi operasional. 
 
Kata kunci: Computer Numerical Control (CNC), machine learning, 
pemeliharaan prediktif, manufaktur 

 

Introduction 

CNC machining is a fundamental component of modern manufacturing and supports key sectors 
such as automotive, aerospace, medical, and oil and gas (Keller et al., 1982; Newman et al., 2012) By 
automating the production of mechanical components through pre-programmed CAD models, CNC 
machines provide the precision, consistency, and flexibility needed for efficient mass production  (Soori 
et al., 2023, 2024). Their role continues to grow as manufacturers adopt advanced technologies to remain 
competitive in an evolving industrial landscape  (Ye et al., 2018) 

CNC machine maintenance is critical to ensuring the reliability and productivity of these systems. 
Three primary maintenance strategies are commonly used: reactive, preventive, and predictive 
maintenance (Muchiri et al., 2014; Roosefert Mohan et al., 2021). Reactive or breakdown maintenance 
involves repairing machines only after they fail, often leading to costly downtime and potential damage. 
Preventive maintenance takes a more proactive approach by scheduling routine servicing based on a 
fixed timeline, regardless of the machine’s actual condition, reducing breakdowns but sometimes 
resulting in unnecessary maintenance. The most advanced strategy, predictive maintenance, uses real-
time data and analytics to monitor machine conditions, predicting failures before they occur. This 
approach minimizes downtime and costs by addressing issues, if necessary, based on actual wear and 
usage. 

Despite advancements in maintenance strategies, unplanned downtime, unexpected machine 
stoppages caused by malfunctions or failures, remains a critical challenge in manufacturing (Cochran et 
al., 2001). Such interruptions reduce overall equipment effectiveness (OEE), slow production, delay 
deliveries, and generate substantial financial losses, with some manufacturers reporting costs of up to 
$260,000 per hour (output.industries, 2024; Xiao et al., 2021). The issue is especially severe in high-mix, 
low-volume environments where operational flexibility is essential (Jauregui Becker et al., 2015). 

These significant operational and financial risks underscore the need to accurately understand and 
predict downtime occurrences. Analyzing patterns in downtime frequency, duration, causes, and trends 
provides insights into dominant failure modes, supports resource prioritization, and improves asset 
management decisions (Muchiri et al., 2014). However, reactive approaches based solely on historical 
data struggle to anticipate random failures, such as sudden component breakdowns or power 
disturbances, making them inadequate for preventing costly disruptions (Alaswad & Xiang, 2017). 

To address this issue, incorporating predictive analytics, real-time monitoring, and sensor-based 
systems can provide timely alerts and early warnings of potential issues, preventing downtime before it 
occurs (Lee et al., 2014). Maintenance strategies shift from reactive firefighting to proactive risk 
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management by estimating the likelihood of failures in advance. Predictive modeling techniques, 
including machine learning and deep learning, have recently gained significant traction for their ability 
to enhance predictive maintenance across various industries (Hussain & Jan, 2019; Wan et al., 2019). 

Predictive maintenance methods commonly include both classical approaches and advanced 
machine learning techniques. Time series forecasting techniques, such as autoregressive integrated 
moving averages (ARIMA), have traditionally been used to predict downtime and failure events based 
on historical data (Alaswad & Xiang, 2017) and (Traini et al., 2019). Pavlyshenko, (2019) mentioned that 
ARIMA for prediction model is closer to results of neural networks, which has the added advantage of 
less memory space and computational time. However, ARIMA's linear assumptions limit its effectiveness 
in handling the nonlinear and noisy data typical of CNC operations (Özel & Karpat, 2005; Sun et al., 2006). 
Complex interrelationships, such as the non-linear effects of tool wear and cutting conditions, often 
require more sophisticated models.  

This is where machine learning (ML) comes into play, which offers significant advantages in 
predictive maintenance by addressing the complexities that classical approaches struggle to capture 
(Pimenov et al., 2023; Soori et al., 2023). ML, as a branch of artificial intelligence (AI), allows machines to 
learn from data, identify patterns, and make decisions without human intervention. ML algorithms can 
capture complex relationships between machine conditions, operational parameters, and failure modes, 
which lead to more precise predictions of equipment failures and maintenance needs (Soori et al., 2024). 
This capability is important for enhancing CNC machine operations, where real-time data analysis can 
help optimize processes, reduce downtime, and improve overall efficiency.  

For example, Support Vector Machines (SVM) are used for condition monitoring and predicting 
the remaining useful life of machines. At the same time, Long Short-Term Memory (LSTM) networks 
handle time-series data effectively, especially in capturing long-term dependencies in nonlinear datasets. 
Other algorithms, including neural networks (Widodo & Yang, 2011), recurrent neural networks (RNN) 
(Malhotra et al., 2016), convolutional neural networks (CNN), and tree-based ensemble methods like 
Random Forest (Zhou et al., 2019), excel at processing noisy and non-linear time series data. Overall, data-
driven approaches like deep learning have demonstrated superior performance to traditional model-
based methods in predictive maintenance tasks, particularly in minimizing human intervention and 
optimizing machine performance. 

However, there is still a gap in the existing literature on the lack of comprehensive, data-driven 
models that can forecast overall CNC machine downtime arising from diverse failure sources. Prior 
studies to date have focused on modeling specific failure modes, such as tool wear (Abellan-Nebot et al., 
2012) or software crashes (Soori et al., 2024) using domain-specific approaches. While these studies 
provide valuable insights, unplanned CNC downtime often stems from various complex and interrelated 
causes, including mechanical breakdowns, electrical faults, and operational errors (Djurdjanovic et al., 
2003). Each failure type may exhibit distinct patterns and trends not captured by models designed to 
predict individual failure modes (Jantunen, 2002). 

There is a need for ML techniques capable of handling heterogeneous industrial failure data to 
predict overall CNC downtime. Such models would provide a more comprehensive view of multiple 
failure types, allowing for more effective maintenance planning and overall uptime improvement. 
Current models optimized for single failure modes fail to address the broader, interconnected nature of 
CNC machine failures. 

Furthermore, while many studies have explored predictive maintenance for CNC machines, the 
rapidly evolving manufacturing environment and the complexity of machine operations require 
continuous exploration and refinement of ML algorithms (references). Downtime patterns vary based on 
machine age, usage intensity, and operational conditions. Advances in ML algorithms offer opportunities 
for improved accuracy, faster computation, and better generalization across diverse datasets. Research 
into more sophisticated and flexible models is essential for enhancing machine reliability and reducing 
production disruptions in real-world applications. 

This study addresses this research gap by developing ML models that use heterogeneous 
downtime data from multiple failure sources, like mechanical failures, electrical faults, software errors, 
etc, to predict aggregated CNC downtime trends. Therefore, this study develops and compares two 
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ensemble learning models: Random Forest and XGBoost, to forecast total CNC downtime using 
heterogeneous failure data from 16 machines. The contribution is twofold: (1) providing a plant-level 
downtime forecasting model that accounts for multiple failure sources, and (2) demonstrating the 
superiority of an optimized XGBoost model for industrial downtime prediction. 
 

Method 

This study adopts a quantitative approach, utilizing time series analysis and machine learning 
techniques to forecast downtime trends in CNC machining operations. The research focuses on predicting 
unplanned downtime, a critical issue in manufacturing industries where machine availability is key to 
maintaining productivity. The study utilizes secondary data collected from multiple CNC machines at 
Company A in Malaysia, consisting of operational and maintenance records over an extended period., 
which contains operational and maintenance records over an extended period. This dataset provides a 
comprehensive basis for understanding historical downtime patterns and informing predictive models. 
Figure 1 summarizes the systematic methodology, aligning with the standard data science process. The 
process begins with data collection and preparation, which involves cleaning, transforming, and 
organizing the raw data into a format suitable for analysis. In this case, the secondary data includes 
various machine-related variables, such as operational hours, instances of downtime, environmental 
factors, and maintenance logs. The data is prepared by removing outliers, handling missing values, and 
ensuring consistency across different periods to improve the accuracy of the subsequent analysis 

  

 
Figure 1. Research Methodology flow 

 
Data Collection  

The secondary data for this study were collected from Company A’s historical CNC maintenance 
records, covering approximately 14 months, from January 2022 to early March 2023. The process of 
downtime data collection is illustrated in Figure 2. The dataset, obtained with permission from the 
company’s technical support team, includes detailed reports of downtime events across 16 CNC 
machining assets in the facility. 

The dataset captures key variables for each downtime event, such as machine ID, failure type, start 
date/time, end date/time, and downtime duration in minutes. Failure types are categorized into several 



QOMARUNA Journal of Multidisciplinary Studies 2025, Vol. 3, No. 1, pp. 59-74 63 
 

groups, including mechanical, electrical, and tool malfunctions. Data was collected daily, with downtime 
incidents consolidated into a single record per day. This level of granularity enables a comprehensive 
analysis and model development aimed at accurately forecasting future downtime events. 

The dataset contains 458 daily records, with 65 instances of CNC machine downtime. Each record 
specifies the downtime duration for that day and includes details of any logged failure events. Days 
without downtime incidents were also recorded, indicating zero downtime hours. This complete dataset 
allows for a thorough analysis of CNC downtime patterns over 14 months, providing valuable insights 
for predictive modeling. 

 

 
 

Figure 1. Downtime Data Collection Process Flow 

 

 
Figure 2. Sample of Manufacturing plant CNC downtime record from January 2022 to early March 2023 

 
Data Preparation  

The raw CNC downtime data from Company A’s maintenance records required substantial 
preprocessing steps before time series modeling and forecasting (see Figure 3). While containing the 
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historical timeline of downtime events, the raw data had several limitations, making it unsuitable for 
downtime occurrence predictive modeling without preprocessing: 

 Irregularity: The records were unevenly spaced in time, with gaps on failure-free days. This 
posed challenges for forecasting algorithms relying on consistent time intervals between 
observations. 

 Lack of explanatory variable: Only fundamental downtime duration values were captured, 
without additional temporal or explanatory variables needed to model failure patterns. 

 Structure: Machine IDs and failure types were stored as unintelligible string labels rather than 
encoded categorical variables. 

 Data leakage: Temporal interrelationships could be exploited if time series splitting was not 
done sequentially. 

 Non-normality: Downtime duration data was right-skewed, needing transforms for effective 
modeling.  

To address these challenges and prepare the data for time series modeling, the following critical 
preprocessing steps were implemented: 

 Time Series Restructuring: The raw data contained temporal gaps, which can degrade forecasting 
performance. Restructuring into an evenly spaced series ensured consistent intervals between 
observations critical for time series algorithms. 

 Feature Engineering: Additional variables representing temporal cycles and failure intervals 
were derived to provide more explanatory power for modeling downtime patterns over time. 

 Encoding: Converting machine IDs and failure types into numeric categories enabled the models 
to recognize these variables' distinct values and patterns (see Tables 1 and 2). 

 Train-Test Split: Temporal splitting prevented data leakage and overfitting by ensuring the 
models were evaluated on unseen future data. 

 Transformation: Data distributions that do not match model assumptions can reduce accuracy. 
Log transforms normalized the raw downtime data to fit the required data normality. 

After preprocessing, the engineered dataset had the necessary structure, explanatory variables, and 
time-ordered train-test split to enable robust machine learning-based forecasting of CNC downtime.  

 

Table 1. Encoded Problem Type 

Problem type Encoded label 
Slant leads 1 
Uneven Winding  2 
Mechanical  3 
Tooling  4 
Stripping  5 
Electrical  6 
Red Lead  7 
Damage Air Coil  8 
Pneumatic  9 
Uneven lead length  10 
Wire Scratch  11 

 

Table 2. Encoded Machine Number 

Machine Number Encoded Label  
CNC 1 1  
CNC 2 2  
CNC 3 3  
CNC 4 4  
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Machine Number Encoded Label  
CNC 5 5  
CNC 6 6  
CNC 7 7  
CNC 8 8  
CNC 9 9  
CNC 10 10  
CNC 11 11 
CNC 12 12 
CNC 13 13 
CNC 14 14 
CNC 15 15 
CNC 16 16 

 
Generating Predictor Using Probabilistic Approach 

Two supplementary predictors—machine number and problem type—were introduced using a 
probabilistic approach to enhance the forecasting models with additional helpful information for 
predicting downtime duration. This step was necessary because the machine number and specific 
problem type were only determined once a downtime event occurred and thus could not be known in 
advance. To account for this uncertainty, the probability p of downtime occurrence for each machine i 
was calculated using Eq .1-3 with the results shown in Table 3: 

Where : i =1, 2, …, 16 and j = 1, 2, …,11 
 

Table 2. Generated Probability of Machine Downtime Given Machine Number and Problem Type 

 Machine Number 
Prb 1 2 3 4 5 6 7 8 10 11 13 14 16 
1 0.182 0.000 0.000 0.111 0.250 1.000 1.000 0.000 0.600 0.333 0.000 0.000 0.500 
2 0.091 0.000 0.500 0.111 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.500 0.167 
3 0.091 0.500 0.000 0.111 0.250 0.000 0.000 0.000 0.000 0.111 0.500 0.000 0.000 
4 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.667 0.200 0.000 0.250 0.000 0.000 
5 0.546 0.333 0.000 0.444 0.250 0.000 0.000 0.000 0.000 0.222 0.000 0.000 0.167 
6 0.091 0.000 0.000 0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.111 0.000 0.000 0.000 
8 0.000 0.167 0.500 0.000 0.000 0.000 0.000 0.333 0.000 0.111 0.000 0.500 0.167 
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.000 0.000 0.000 0.000 
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.111 0.000 0.000 0.000 

𝑝(Downtime Occurence) =
Number of Downtime
Total Number of Days (1) 

𝑝(Downtime Occurence|Machine 𝑖) =
Count of machine 𝑖 downtime occurence 

Count of downtime occurrence
 (2) 

𝑝(Problem 𝑗|Machine 𝑖) =
Count of machine 𝑖 downtime occurence with problem 𝑗 

Count of downtime occurrence
 (3) 
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Model Development  

Given the study's focus on comparing machine learning techniques for downtime forecasting, two 
prominent algorithms—Random Forest (RF) and eXtreme Gradient Boosting (XGBoost)—were selected 
for model development. These algorithms were chosen for their ability to handle complex, nonlinear 
relationships in data and their proven effectiveness in predictive maintenance applications. 

 
Ensemble Learning Algorithms 

Random Forest 
Random Forest (RF) is an ensemble learning method that builds multiple decision trees on 

bootstrapped subsets of the training data and aggregates their predictions to produce a final output (see 
Figure 4). Each tree is trained on a randomly sampled dataset and uses a random subset of features at 
each split, promoting diversity and reducing overfitting. During prediction, the outputs of all trees are 
averaged, resulting in a more stable and accurate forecast. 

RF is well suited for downtime forecasting because it can capture nonlinear relationships and high-
order interactions inherent in complex industrial data (Genuer et al., 2010). It is robust to noise and 
outliers, limits overfitting through controlled tree depth, and enables efficient parallel training (Breiman, 
2001). These characteristics make RF a strong candidate for forecasting tasks involving irregular and noisy 
temporal patterns. 

 

 
Figure 4. Graphical Representation of Random Forest (Khan et al., 2021). 

 
Extreme Gradient Boosting (XGBoost) 

XGBoost is a tree-based ensemble method that applies gradient boosting to iteratively improve 
model accuracy (Chen & Guestrin, 2016) (see Figure 5). Unlike standard boosting, it incorporates strong 
regularization—such as shrinkage and tree pruning—to reduce overfitting as new trees are added. The 
algorithm also uses second-order gradient information to more efficiently minimize the loss function, 
enabling faster and more precise optimization (Mitchell & Frank, 2017) XGBoost offers several 
computational advantages, including parallel processing, approximate tree learning for speed, and the 
ability to handle missing data natively. Subsampling of both data instances and features further enhances 
model generalization. These characteristics make XGBoost particularly effective for time-series 
forecasting, where its combination of gradient boosting, regularization, and computational efficiency 
consistently yields high predictive accuracy.  
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Figure 5. Graphical Representation of XGBoost (Yao et al., 2022). 
 
 

Model Training 

The pre-processed downtime dataset was split into contiguous train and test sets using a rolling 
origin scheme to simulate real-world iterative forecasting. The first 80% of the time series was the initial 
training set, with the next 20% as the test set. 

The Random Forest and XGBoost models were trained on the training data using 5-fold stratified 
cross-validation with early stopping to prevent overfitting. In k-fold cross-validation, the training data is 
split into k groups or folds. Each fold is held out as the validation set, while the remaining k-1 folds are 
used to train the model. Early stopping tracks validation performance, stopping training if metrics worsen 
for a defined number of iterations to avoid overfitting the training data. 

In addition, a rolling origin evaluation was implemented where the test set is progressively rolled 
forward in time. The models are retrained on newly available data at each iteration to simulate real-world 
systems where forecasts are generated continuously as new data arrives. Model performance is evaluated 
by predicting each test partition. This training approach, through temporal cross-validation, early 
stopping, and rolling origin testing, evaluates the models' ability to generalize to unseen data, which is 
critical for reliable forecasting performance. It mimics how the models would be retrained and generate 
forecasts in an operational environment. 

 
Hyperparameter Tuning (Random Search CV) 

The Random Search Cross-Validation optimizer improved both RF and XGBoost models. The 
open-source Python machine learning toolkit scikit-learn offers methods for adjusting model 
hyperparameters. The complete model optimization procedure employing Random Search CV may be 
summed up as follows: 
Step 1: A search space is a bounded domain of hyperparameter values. 
Step 2: Sample that domain's points at random.  
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Step 3: Create a random search instance and fit it to a model using Scikit-Learn. Indicate the number of 
cross-validation folds and the number of iterations or possible combinations to try.  
Step 4: Get the best parameters and model from the optimizer. Compare the base and top random search 
models to see if the random search produced a superior model. 
 

Results and Discussion 

The Results 

The study compared Random Forest and XGBoost models for forecasting CNC downtime using 14 
months of maintenance records from Company A. As shown in Table 4, XGBoost substantially 
outperformed RF across all error metrics. Based on these metrics, the Random Forest model performed 
better in minimizing forecasting errors for the CNC downtime duration data before tuning. The lower 
values indicate that the Random Forest predictions were numerically closer to the downtime duration. 

However, upon further diagnostic analysis using learning curves, overfitting tendencies were 
revealed in both models. The learning curves plotted model performance on the training set and a held-
out validation set as training progressed (see Figures 6 and 7). For the Random Forest model, the training 
MSE stabilized at around 0.5 after 50 estimators, while the validation MSE remained around 2.5 with no 
convergence. The XGBoost learning curve showed a similar trend, with the training MSE reaching 0 after 
100 iterations but validation MSE stabilizing at a higher value of around 3.5. 

These diverging training and validation errors indicate that despite achieving low training MSE, 
both models were overfitting the data. They failed to generalize well to new unseen data, necessitating 
corrective measures. 

 
Model Optimization  

The pre-processed downtime data were divided into sequential training and test sets using a 
rolling-origin scheme to reflect real-world forecasting. Hyperparameter tuning was then conducted using 
Randomized Search Cross-Validation to reduce overfitting and identify configurations that generalized 
well to unseen data. 

As shown in Table 4, the tuned XGBoost model substantially outperformed the Random Forest 
model across all error metrics. Its lower MAE, equivalent to an average prediction error of under 30 
minutes, offers meaningful operational advantages. With more reliable downtime forecasts, maintenance 
teams can plan interventions earlier, prepare spare parts in advance, and allocate personnel more 
efficiently, reducing the likelihood of prolonged or cascading disruptions. In contrast, the Random Forest 
model retained higher error levels and exhibited a wider gap between training and validation 
performance, indicating weaker generalization. 

Table 3. Model Error Performance Metrics 

 Random Forest XGBoost 

Before Tuning After Tuning Before Tuning After Tuning 

MSE 5.858 1.265 6.656 0.402 
RMSE 2.420 1.125 2.580 0.634 
MAE 1.490 0.943 1.563 0.470 
MAPE 1.011 1.754 0.986 0.719 

 
The predicted-versus-actual plot (Figure 10) further illustrates XGBoost’s ability to follow observed 

downtime patterns closely, with only a few deviations likely attributable to outlier events. This alignment 
reinforces the model’s practical utility: accurate short-horizon forecasts can support proactive scheduling 
and improve overall equipment availability in environments where unexpected stoppages are costly. 
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Figure 6. RF learning curve before hyperparameter tuning. 

 

 
Figure 7. XGBoost learning curve before hyperparameter tuning. 

 

 
Figure 8. RF learning curve after hyperparameter tuning. 
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Figure 9. XGBoost learning curve after hyperparameter tuning. 

 

Table 4. Predicted and actual downtime duration on the test set 

Date 
Downtime Duration (Hours) 
XGB Predicted RF Predicted Actual 

2023-01-08 1.01 1.15 1.08 
2023-01-13 1.48 2.86 0.92 
2023-01-24 0.96 2.01 0.17 
2023-02-10 1.05 2.21 0.50 
2023-02-16 1.06 1.64 0.75 
2023-02-19 0.84 1.25 2.33 
2023-02-23 1.01 1.15 1.00 
2023-03-05 1.05 1.84 0.67 
2023-03-06 1.47 2.40 1.25 
2023-03-08 1.17 3.29 2.33 
2023-03-09 1.00 1.59 0.85 
2023-03-10 0.97 1.02 1.17 
2023-03-11 1.02 1.23 0.83 

 

 
Figure 10. Predicted vs actual plot. 
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Discussion  

This study demonstrated that machine learning models can effectively forecast CNC machine 
downtime trends when trained on historical maintenance records. The optimized XGBoost model 
outperformed the Random Forest model in predicting future downtime duration. XGBoost's superior 
accuracy can be attributed to its gradient-boosting approach, which iteratively minimizes errors through 
additive expansion. The model’s regularized objective function helps control complexity and prevent 
overfitting, while hyperparameter tuning, performed using randomized search, identified the optimal 
configuration for the dataset. This combination of boosting, regularization, and hyperparameter 
optimization allowed XGBoost to learn downtime patterns from the time series data effectively. 

In contrast, the initial Random Forest model exhibited signs of overfitting, as reflected by the large 
gap between training and validation errors. This was likely due to the limited size of the dataset and the 
absence of early hyperparameter tuning. While the Random Forest model's bagging process creates 
highly variant decision trees, this variability can result in overfitting when dealing with noisy training 
data. After tuning, the overfitting was reduced, but XGBoost still achieved lower prediction errors, 
highlighting the strength of gradient boosting in handling time series forecasting problems involving 
sparse and irregular data. 

Key downtime trends revealed by this study, such as the right-skewed distribution of event 
durations and the top recurring failure types, are consistent with findings from (Abdallah et al., 2016) and 
(Lee et al., 2014). However, those studies used traditional statistical forecasting models like ARIMA rather 
than advanced machine learning techniques. The stable and generalized performance of XGBoost 
underscores its advantage in capturing complex temporal relationships and improving the accuracy of 
downtime forecasting. 

The practical implication of these findings is that enhanced forecast accuracy can help maintenance 
teams intervene earlier, reducing unplanned downtime, preventing cascading delays, and potentially 
lowering associated operational costs. In industrial settings where downtime is extremely expensive, 
even modest improvements in prediction error can yield significant benefits 

One limitation of this study is the relatively small dataset collected from a single manufacturer over 
one year. Expanding the dataset to include longer durations and data from multiple manufacturers would 
allow for more robust model performance validation and testing. Besides, incorporating more 
explanatory variables, such as maintenance history, operating conditions, and detailed failure data, could 
improve the models' predictive accuracy. Future research should explore these improvements. 

Another limitation is that the study primarily focused on predicting downtime duration without 
delving into the specific causes of failures. Failure type prediction or root cause analysis could provide 
more actionable insights for targeted maintenance strategies. Additionally, the absence of real-time data 
in the current model limits its practical application in dynamic environments where immediate decision-
making is critical. Future studies should explore integrating real-time sensor data and Internet of Things 
(IoT) technologies, which could further enhance the model’s applicability and responsiveness. 

While this study demonstrates the potential of gradient-boosting models for predicting CNC 
downtime trends, the current approach remains in its early stages. With further refinement and larger 
datasets, this methodology could contribute to more intelligent maintenance scheduling, improving 
machine availability and operational efficiency. However, translating this approach into an AI-based 
decision support system for industrial engineers would require significant additional development, 
including integration with real-time data and testing in diverse manufacturing environments. 

Conclusion 

This study demonstrates that XGBoost provides superior performance for forecasting CNC 
machine downtime using heterogeneous industrial failure data. Beyond statistical improvements, the 
model’s accuracy, particularly its average error of less than 30 minutes, offers practical value for 
predictive maintenance. More precise forecasts allow maintenance teams to plan interventions earlier, 
allocate technicians and spare parts more effectively, and mitigate the operational disruptions 
associated with unexpected stoppages. In manufacturing environments where downtime is costly, even 
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modest gains in prediction accuracy can significantly improve equipment availability and production 
continuity. 

Theoretically, this study contributes a plant-level forecasting approach that integrates multiple 
failure sources, addressing a gap in prior research that typically focuses on isolated failure modes. The 
comparison of Random Forest and XGBoost under a rolling-origin evaluation also provides 
methodological insight into the suitability of ensemble learning for downtime prediction in real 
industrial settings. 

Future work should incorporate real-time sensor data, additional operational variables, and 
larger multi-site datasets to enhance generalizability. Overall, the findings highlight the potential of 
advanced machine learning models to support data-driven maintenance decisions and strengthen 
operational efficiency in modern manufacturing environments. 
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