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Computer Numerical Control (CNC) machines remove material from a blank or workpiece 
using digital controls to produce custom-designed parts. Maintaining their accuracy and 
precision under challenging conditions after long-term usage is crucial. This study aims to 
evaluate CNC product quality using Overall Equipment Effectiveness (OEE) and enhance 
long-term performance through data-driven approaches. The method of this study focuses 
on analyzing scrap rate data, employing a u-chart to monitor stability, and applying 
machine learning regression models—K-Nearest Neighbour (KNN) and Random Forest 
(RF)—to forecast scrap rates. These forecasts help identify when preventive maintenance is 
necessary, preserving machine precision over time. This study also applied visualization of 
results with Microsoft Power BI to enhance data interpretation, aiding quick responses to 
potential problems. Results indicate that RF outperforms KNN in predicting scrap rates. 
Stacking these models further improves accuracy, offering a more reliable decision-making 
tool for anticipating quality issues. By detecting anomalies early, manufacturers can 
implement timely maintenance, minimizing downtime and prolonging CNC machine 
lifespan. In conclusion, integrating scrap rate analysis, statistical process control, and 
advanced machine learning techniques can maintain product quality and reduce 
inaccuracies. Companies should include more proactive maintenance planning by 
employing better forecasting.  
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Mesin Computer Numerical Control (CNC) menghilangkan material dari sebuah 
benda kerja dengan menggunakan kontrol digital untuk menghasilkan komponen 
yang dirancang secara khusus. Penting untuk menjaga akurasi dan presisi mesin 
ini di bawah kondisi yang menantang setelah penggunaan jangka panjang. 
Penelitian ini bertujuan untuk mengevaluasi kualitas produk CNC menggunakan 
Overall Equipment Effectiveness (OEE) dan meningkatkan kinerja jangka panjang 
melalui pendekatan berbasis data. Metode penelitian ini berfokus pada analisis laju 
scrap, penggunaan u-chart untuk memantau stabilitas, serta penerapan model 
regresi machine learning—K-Nearest Neighbour (KNN) dan Random Forest (RF)—
untuk memprediksi laju scrap. Prediksi tersebut membantu mengidentifikasi 
waktu yang tepat untuk melakukan pemeliharaan pencegahan, sehingga presisi 
mesin dapat tetap terjaga seiring waktu. Penelitian ini juga memanfaatkan 
visualisasi hasil menggunakan Microsoft Power BI untuk meningkatkan 
interpretasi data dan memfasilitasi respons cepat terhadap potensi masalah. Hasil 
penelitian menunjukkan bahwa RF memiliki kinerja lebih baik dibandingkan KNN 
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dalam memprediksi laju scrap. Penggunaan stacking pada model-model tersebut 
lebih lanjut meningkatkan akurasi, sehingga memberikan alat pengambilan 
keputusan yang lebih andal dalam mengantisipasi masalah kualitas. Dengan 
mendeteksi anomali secara dini, produsen dapat melakukan pemeliharaan tepat 
waktu, meminimalkan waktu henti, serta memperpanjang umur operasional mesin 
CNC. Kesimpulannya, integrasi analisis laju scrap, pengendalian proses statistik, 
dan teknik pembelajaran mesin yang canggih dapat secara efektif menjaga kualitas 
produk serta mengurangi ketidakakuratan. Perusahaan sebaiknya mengadopsi 
perencanaan pemeliharaan yang lebih proaktif dengan memanfaatkan peramalan 
yang lebih baik. 
 
Keywords: Computer Numerical Control (CNC), Overall Equipment Effectiveness (OEE), 
preventive maintenance, perbaikan kualitas, machine learning 

 
1. Introduction 

Nowadays, manufacturing companies supplying electronic components recognize the critical 
importance of product quality to maintain customer satisfaction and competitiveness. Ensuring product 
quality begins with maintaining precise, reliable production equipment. Preventive maintenance plays 
a key role in improving machines' Overall Equipment Effectiveness (OEE), thereby enhancing 
performance, availability, and product quality. Moghaddam (2015) defines preventive maintenance as 
scheduled activities over a planning horizon to extend a system’s useful life and maintain 
responsiveness, ultimately making it more reliable and available. 

Within manufacturing, computer numerical control (CNC) machines form the backbone of 
precision-driven production processes. CNC technology removes material layers from a workpiece 
using digitally controlled machine tools, enabling high-accuracy, custom-designed parts. Over 
extended operation, maintaining precision under challenging conditions becomes essential to ensure 
product quality (Liu, et al, 2022). Preventive maintenance strategies for CNC machines help preserve 
this accuracy and reduce product scrap. This benefits both the manufacturer’s profitability and 
reputation. 

The transformative potential of predictive maintenance has been extensively demonstrated in 
prior research. Shahin et al. (2023) investigated over 20 fault detection models using Machine Learning 
(ML), Deep Learning (DL), and Deep Hybrid Learning (DHL) to minimize manufacturing downtime, 
achieving significant accuracy improvements in early failure detection. Traini (2019) introduced a 
machine learning framework for predictive maintenance in milling, leveraging Industrial IoT and AI 
technologies to enhance real-time monitoring and defect detection. Similarly, Paolanti (2018) employed 
Random Forest models within a Machine Learning architecture to improve system reliability and 
prevent unexpected equipment failures. These studies emphasize the effectiveness of advanced 
analytics in optimizing maintenance practices, reducing defects, and improving reliability. 

Despite these advancements, case-specific investigations remain critical, particularly for 
established companies like “Company T,” an electronic manufacturer located in Pahang, Malaysia, 
serving the aerospace, automotive, medical, and industrial sectors. Although the company has operated 
for over two decades, it has yet to implement predictive maintenance practices. Addressing this gap 
offers an opportunity to tailor state-of-the-art methodologies to real-world challenges, ensuring 
consistent product quality and operational efficiency. 

This study aims to investigate the application of preventive maintenance and predictive tools in 
improving CNC machine quality control, particularly for air coils, which are critical components for 
automotive and industrial clients. By analyzing measurement data, employing advanced statistical and 
machine learning approaches, and implementing systematic maintenance strategies, this research aims 
to minimize product scrap, enhance OEE, and improve customer satisfaction while providing practical 
solutions tailored to the specific operational conditions of “Company T.” 

. 
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2. Literature Review 

2.1 Computer Numerical Control (CNC) Machine 

Computer Numerical Control (CNC) machines reflect a region’s industrial development and are 
central to advancing aerospace, military, automotive, and electronic manufacturing. They have long 
played a key role in national competitiveness. Among their performance measures, machine accuracy 
is paramount, as a part’s precision ultimately depends on the machine’s machining accuracy (Liu et al., 
2022). Their accuracy, which relates to how closely finished parts match design specifications, is a key 
performance measure. As noted in "Monitoring of CNC Machine Tool Accuracy," proper maintenance 
and adherence to certified standards (ISO, DIN, EN) ensure machines meet precision requirements.  

Perfect accuracy is rarely attainable. Holub’s "Geometric Error Compensation of CNC Machine 
Tool" highlights that actual part dimensions seldom match nominal design values due to process 
variations. Finishing operations, however, can bring measurements closer to the target. Manufacturers 
enhance product precision and maintain high-quality standards by emphasizing quality measures and 
reducing output errors. 

 

 
 

Figure 1. Computer Numerical Control (CNC) machine (Documentation of Company “T”) 

 
2.2. Overall Equipment Effectiveness (OEE) 

Overall Equipment Effectiveness (OEE) is an excellent indicator for measuring sustainability 
improvements relative to a company’s initial operational state. As a key performance indicator (KPI), 
OEE reflects not only a machine or system’s performance, but also the effectiveness of the personnel 
responsible for its maintenance (Haddad et al., 2021). It integrates aspects of operation, maintenance, 
and resource management (Tsarouhas, 2020).  

Although OEE could not reveal the exact causes of inefficiencies, it helps categorize areas needing 
improvement (Tsarouhas, 2020). Enhancing OEE can boost production capacity, improve product 
quality, reduce downtime, and increase overall system efficiency. According to P. H. Tsarouhas (2020), 
OEE is determined by three critical parameters: availability, performance, and quality. Figure 2 
illustrates how OEE is calculated based on these factors. 

Measuring OEE effectively evaluates the efficiency of a single machine or an integrated 
manufacturing system (Dewi, et al., 2020). Widely recognized as a measure of internal efficiency, OEE 
reflects a machine’s true value-added output. It helps identify equipment-related losses to improve 
overall asset performance and reliability. 

These losses can be grouped into six major categories (Tsarouhas, 2020): equipment failure, setup 
and adjustment delays, minor stoppages and idle times, speed reductions, defects or rework, and 
reduced performance (Tsarouhas, 2019). By addressing these losses, improving OEE results in fewer 
breakdowns, reduced idle times, lower defect rates, and fewer workplace accidents. It also boosts 
productivity, optimizes processes, encourages workforce involvement, increases profits through cost 
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savings, enhances customer satisfaction, and raises employee morale and confidence. Figure 3 illustrates 
these six major categories. 

 

 
 

Figure 2. OEE Calculation (Tsarouhas, 2020) 

 

 
Figure 3. Six Major OEE (Tsarouhas, 2019) 

Quality 

Quality is one of the three factors used to determine OEE. The quality rate measures how many 
non-defective products a machine produces during its run time (Dewi, et al., 2020). It evaluates the 
percentage of satisfactory units produced, accounting for defects, scrap, and rework that affect final 
product quality. To calculate quality, count the number of units meeting required standards and divide 
by the total number produced while operating (Tsarouhas, 2020): 

Quality=
Good Units
Total Units

× 100% (1) 

Improving quality involves implementing quality control checks, enhancing equipment 
reliability, and providing better training and procedures. These measures raise the OEE score by 
reducing scrap and rework, increasing customer satisfaction, and improving overall product quality. 

 
Performance 

Performance is one of the three OEE components, measuring how effectively equipment operates 
relative to its maximum potential output (Singh, et al., 2021). It accounts for speed losses, minor stops, 
and slow cycles that reduce the rate at which products are produced, even if the equipment is fully 
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available. Performance is calculated by comparing the total products produced to what could have been 
produced under optimal conditions (Dewi, et al., 2020): 

 

Performance =  
Actual Output

Maximum Possible Output
 ×  100% 

(2) 

Increasing performance can involve maximizing production rates, minimizing downtime 
between cycles, streamlining changeover times, and providing better training and procedures. By 
enhancing performance, you can increase both the equipment’s productivity and its OEE score. 

 
Availability 

Availability is the third component of OEE and measures the percentage of time equipment is 
ready for use (Haddad, et al, 2021). It accounts for both scheduled and unscheduled downtime, as well 
as any other factors that prevent the equipment from operating at full capacity. Scheduled downtime 
includes planned maintenance, changeovers, and other predefined events requiring the equipment to 
be offline. Unplanned downtime covers unexpected breakdowns, repairs, and incidents that halt normal 
operations. To determine availability, you must identify the total time the equipment ran productively 
and compare it to the planned production time during the measurement period. The formula for 
availability is: 

Availability = 
Operating Time - Downtime

Operating Time
×  100% 

(3) 

Operational time represents the total period the equipment is intended to run during production, 
while downtime is the total time it remains unavailable due to unexpected issues like breakdowns or 
maintenance. Improving availability involves preventive maintenance, reducing changeover time, 
enhancing equipment reliability, and implementing effective planning and scheduling. By increasing 
equipment availability, you boost overall productivity and the OEE score. 

 
2.3. Preventive Maintenance  

Preventive maintenance refers to scheduled activities performed at regular intervals to extend a 
system’s useful life and keep it both productive and responsive (Moghaddam, 2015). These activities—
such as inspections, cleaning, lubrication, adjustments, alignments, and component replacements—
reduce a system’s “effective age” and lower failure rates. Manufacturers typically provide 
recommended maintenance schedules to minimize unexpected failures over a machine’s operational 
lifespan. While preventive maintenance improves reliability and availability, its designers must balance 
the costs of upkeep and replacement against the risks and expenses of unanticipated breakdowns. 

Applied correctly, preventive maintenance ensures CNC machines remain efficient, producing 
parts that meet precise design specifications and maintaining high quality standards. By proactively 
addressing wear and tear, companies can reduce product defects, lower scrap rates, and improve their 
overall profitability. Systematic preventive maintenance planning also helps coordinate service 
intervals, allowing organizations to address issues before they arise and maintain optimal equipment 
performance. This strategic approach ultimately leads to more consistent product quality, increased 
customer satisfaction, and better long-term returns. 

 
2.4. Predictive Maintenance  

Predictive maintenance represents a proactive strategy that relies on data analysis and predictive 
modelling to anticipate equipment failures, enabling maintenance tasks to align with actual conditions 
rather than fixed schedules. Accordingly, organizations can reduce downtime and costs, a key driver 
for its growing adoption across multiple industries, including CNC machine facilities. 
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In a prior study, Lee et al. (2022) developed a predictive maintenance system for CNC machines 
that used Machine Learning (ML) models to forecast cutting tool loads. By anticipating periods of high 
stress, maintenance activities could be scheduled more effectively, minimizing downtime and 
extending tool life. However, the system’s success depended heavily on accurate, high-quality sensor 
data and machine logs. 

Expanding on this research, Soori et al. (2023) reviewed ML and AI techniques—such as 
regression models, support vector machines (SVMs), and artificial neural networks (ANNs)—applied 
to CNC predictive maintenance. They identified vast potential for ML and AI to revolutionize 
maintenance practices but noted challenges like machine performance variability and non-standardized 
data. The authors called for collaboration between data scientists and domain experts to address these 
issues and fully exploit ML and AI capabilities. 

In another advancement, Ruiz Rodríguez et al. (2022) introduced multi-agent deep reinforcement 
learning (MADRL) for predictive maintenance in parallel machines. This adaptive system outperformed 
traditional methods by reducing downtime and extending machine lifespan. Nevertheless, its heavy 
computational demands may limit its applicability in certain environments. 
 
3. Method 

This study involves two main stages: first, constructing a control chart based on defects per unit 
produced by CNC machines; second, developing predictive models using various machine learning 
algorithms. 

 
3.1. Control Chart 

A u-chart, a key tool in statistical process control (SPC), monitors the number of defects per unit 
over time. It is particularly useful in quality control and manufacturing, where minimizing defects is 
essential for cost-effectiveness, customer satisfaction, and compliance with industry standards (Tang, et 
al., 2019). 

To construct a u-chart, samples are collected at regular intervals, and the defect rate per unit is 
calculated for each sample. Care should be taken to ensure that the sample size (n) is representative, as 
variations in n affect the accuracy of the results. In cases where sample sizes differ, applying a weighted 
moving average can help maintain a consistent view of process performance. Equation (4) calculates the 
average defect rate per unit, which serves as the central line in the u-chart whereas Equation (5) provides 
the formulas for the Upper and Lower Control Limits (UCL and LCL). UCL and LCL reflect the 
acceptable range of variation for an in-control process. If data points fall outside these limits, it may 
indicate an out-of-control condition, prompting further investigation (Ieren, et al., 2020).  

 

𝑢 =
𝑢

𝑛
 

𝑢ത =
∑ 𝑐

∑ 𝑛
 

𝜎𝑝 =  ඨ
𝑢ത

𝑛
 

(4) 

where: 
c: number of defects 
k: number of lots 
n: sample size 

 
Upper Control Limit: 

𝑈𝐶𝐿௣  =  𝑢ത  +  3𝜎𝑝 
Lower Control Limit: 

𝐿𝐶𝐿௣  =  𝑢ത  +  3𝜎𝑝 
 

(5) 

 



 

QOMARUNA Journal of Multidisciplinary Studies 2024, Vol. 02, No. 01, pp. 1-19 7 
 

By applying control limits, one can determine whether a process is in control. A process is 
considered stable if plotted points remain within the control limits and follow a random pattern. Points 
that fall outside these limits or form non-random patterns suggest the presence of special causes that 
require investigation and correction. It is important to note that u-charts assume data follows a Poisson 
distribution and that defect rates are moderate. Extremely low defect rates may require large sample 
sizes, while very high rates may limit the chart’s applicability. 

Control charts like the u-chart are invaluable for monitoring process performance over time. They 
typically feature three lines: a central line representing the average and upper and lower control limits, 
often set at three standard deviations. Selecting an appropriate control chart is crucial, especially when 
dealing with attribute data such as defect counts. 

After creating a control chart and interpreting its results, the next phase involves using the 
collected data to inform predictive models. In this investigation, two models—K-Nearest Neighbors 
(KNN) and Random Forest (RF)—will analyze data from the u-chart to predict parameters of interest 
(e.g., air coil measurements). These predictions help improve process understanding and guide 
informed decision-making. 

 
3.2. Building Prediction Model 

After creating the control chart, the next step is to use the collected information to train a 
predictive model for the parameter of interest—such as air coil measurements. In this study, two models 
will be employed: the K-Nearest Neighbors (KNN) algorithm and the Random Forest (RF) algorithm. 
Both will use the data obtained from the u-chart to generate predictions, ultimately enhancing our 
understanding of the underlying process. 
 
K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is a supervised learning algorithm applicable to both classification 
and regression tasks. In regression, KNN identifies the k nearest data points relative to a test data point 
and then predicts the output as the average value of these k neighbors. The prediction of KNN 
regression can be expressed as follows Rodriguez-Galiano, et al. (2015): 
 

𝑦ො =
1

𝑘
෍ 𝑦௜

௫೔∈ே(௫)

 (6) 

Here, the algorithm assumes that all input variables are on the same scale and that the target 
variable is continuous. Choosing the optimal k is critical. A larger k tends to yield smoother predictions, 
while a smaller k may provide more flexibility. To determine the best k, it’s often useful to experiment 
with different values and evaluate performance using cross-validation or other error metrics. 

 
Random Forest 

Random Forest regression is often employed for predicting continuous values rather than 
categorical outcomes. As an ensemble method, it combines multiple decision trees to produce a final 
prediction. Each decision tree is trained on a randomly selected subset of the training data (with 
replacement), and after all trees are trained, their predictions are averaged to yield the final result. 
Equation 7 shows the calculation of predicted value of y (Rodriguez-Galiano, et al., 2015): 

The predicted output value for x is the average of the outputs predicted by all the trees: 
 

𝑅𝐹(𝑥) =
1

𝑇
෍ 𝑦௧ෝ (𝑥)

்

௧ୀଵ

 (7) 

Where: 
x: input vector representing the set of features for which a prediction is to be made. 
T: total number of individual decision trees that make up the Random Forest. 
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𝑦௧ෝ (𝑥): The prediction made by the tth decision tree in the Random Forest for the input x 
 
In this notation, RF(x) is the predicted output value for the input vector x. Random Forest 

regression offers several advantages over other regression algorithms. It is less prone to overfitting, can 
efficiently handle high-dimensional data, trains and predicts relatively quickly, and can model non-
linear relationships between input features and output values. Its performance can be fine-tuned by 
adjusting hyperparameters such as the number of trees, the maximum tree depth, and the number of 
features considered at each split. Optimal parameter values are often identified through cross-
validation (Alquthami, et al., 2022). In this study, a RF regression model was applied to the air coil scrap 
data to generate predictions and meet the research objectives. 

 
4. Results and Discussion 

4.1 Results 

Model Selection Analysis 

Because the scope of the model is quite broad, a bar chart was used to pinpoint which models 
warrant closer attention. A threshold, derived from the overall scrap data, serves as a benchmark for 
selecting the models under review. This targeted approach simplifies the analysis, making it clearer and 
more aligned with the study’s objectives. 

Based on the production data, a threshold was established to identify which models require 
further analysis. As shown in Figures 6 and 7, seven machines exceeded this threshold—specifically 
machines 1, 2, 4, 5, 10, 11, and 16. The models involved are HA00-08464KLFTR, HA00-17359ALFTR, 
and HM73-10C300LFTR. 

 

 
 

Figure 6. Threshold Productivity Model 
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Figure 7. Productivity by Model 

 
U-Chart 

The utilization of the U-chart proves to be a viable means of monitoring the caliber of output from 
a CNC apparatus via pre-emptive maintenance. The use of a chart aids in the detection of possible 
deficiencies before they develop into significant problems and contributes to the preservation of the 
machinery's output quality. The utilization of CNC machine assists in gauging the caliber of the 
generated output and guaranteeing its adherence to the prescribed criteria of acceptability. One 
limitation of this case study pertains to the temporal scope of the data, which is restricted to a one-year 
duration. It can be argued that the control chart is more efficacious than plotting data by date or daily. 
Through the graphical representation, it is possible to observe the progression of a certain procedure 
monthly. However, for greater specificity, a more detailed scrutiny can be carried out by analyzing the 
data daily. The monitoring process will follow as in section 3.8 to evaluate the u-chart. But the evaluation 
focuses on the data that occur anomalies and in control at that month.  

According to the data in Figure 8, only in January and May did the process remain consistently 
within the established control limits. In contrast, significant volatility was observed during July and 
September, making process management challenging. To pinpoint the problematic machine within the 
HA00-08464LFTR model, it is necessary to determine whether machine 1, machine 2, or machine 4 is 
responsible for the observed instability. 
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Figure 8. Control Chart for Model 1 

 
According to the data in Figure 9, the process remained consistently within the established control 

limits during May, as indicated by the plot falling entirely within the designated control range. 
However, certain periods, notably July and September, showed greater variability, posing challenges 
for effective process management. Additionally, production ceased in November, coinciding with the 
conclusion of the Descriptive Analysis segment. 

 

 
Figure 9. Control Chart Model 2 

 
 As depicted in Figure 10, the process control remained within established limits only during 

October, as both periods displayed plots confined to the specified range. In contrast, variability 
intensified in September, where a notable outlier emerged. Despite this anomaly, the process remained 
stable, though it fell outside the expected parameters. September’s scrap rate reached the highest 
recorded peak, posing additional challenges to maintaining effective process oversight. 
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Figure 10. Control Chart Model 3 

 
Regression Model 

A forecasting analysis was conducted using data from 2022 on three models: Model 1 (HA00-
08464LFTR), Model 2 (HA00-17359ALFTR), and Model 3 (HM73-10C300LFTR). The machine learning 
pipeline remains consistent for all three, differing only in column identifiers. Each model’s data was 
split into training (80%) and testing (20%) sets to facilitate analysis. 

Feature selection was then performed to identify the most relevant variables. By removing 
unnecessary, redundant, or less informative features, feature selection helps streamline the model, 
improve accuracy, reduce overfitting, and shorten training times. 

Next, a hyperparameter tuning approach was applied to optimize the models (see Figure 11). 
Random search, a method for discovering the best set of hyperparameters, was employed. 
Hyperparameters are preset values that influence a model’s training behavior and overall performance. 
By defining a parameter grid and conducting a grid search, the process finds the parameter combination 
that yields the best performance. Random search tuning was applied to both RF and KNN models, 
previously selected during the model selection phase. 

 

 
Figure 11. Hyperparameter Tuning Code 

 
 

 
Figure 12. Training Model Code 
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In this study, the chosen models are KNN and RF. Among them, RF is considered an ensemble 
model, while KNN is treated as a base model. The evaluation criteria include minimizing the Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE), while maximizing the correlation coefficient 
(R) (Chicco, et al., 2021). Based on these criteria, Table 1 indicates that the best-performing models are 
RF for Model 1 and Model 3, and KNN for Model 2. 

 
Table 1. Evaluation for the best model 

Keyword Model ML Model RMSE MAE R 
Model 1 HA00-08464LFTR RF 0.0049 0.0024 0.898 

KNN 0.0100 0.0047 0.578 
Model 2 HA00-17359ALFTR RF 0.0457 0.0127 0.177 

KNN 0.0100 0.0156 0.523 
Model 3 HM73-10C300LFTR RF 0.008 0.0025 0.821 

KNN 0.013 0.0048 0.559 
 

Although the model’s performance was already established, further improvement can be 
achieved through stacking, an ensemble technique that layers multiple models to enhance predictive 
accuracy. By blending predictions from different models, stacking can bolster overall performance. As 
shown in Table 2, most models benefit from stacking except for Model 1, where the RF model alone still 
outperforms the stacked approach. 

To validate these findings, actual and predicted values were compared. The actual data from 
January to March 2023 served as a reference, while the models were trained and tested exclusively on 
data from 2022 before forecasting and comparing the results against the 2023 actuals. This approach 
ensures a realistic assessment of model performance in a true production environment. 

 

 
 

Figure 13. Stacking Method for Improvement of Model 
 

Table 2. Evaluation of Model by Adding Stacking Method 
 

 
From Table 4, the stacking algorithm achieved the highest performance for Model 2 and Model 

3, while Random Forest remained superior for Model 1. Figures 14, 15, and 16 compare actual and 
predicted values produced by RF and the stacking approach. Although RF reached higher peaks, the 
stacking predictions more closely matched the actual collected data. Unlike testing on historical data, 

Keyword Model ML Model RMSE MAE R 
Model 1 HA00-08464LFTR RF 0.00489 0.00235 0.89849 

KNN 0.00997 0.00470 0.57845 
Stacking 0.00738 0.00315 0.76877 

Model 2 HA00-17359ALFTR RF 0.04568 0.01270 0.17666 
KNN 0.00997 0.01557 0.52287 
Stacking 0.03126 0.00886 0.61453 

Model 3 HM73-10C300LFTR RF 0.00812 0.00249 0.82134 
KNN 0.01276 0.00478 0.55867 
Stacking 0.00781 0.00333 0.83472 
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these graphs demonstrate how the models perform on real, current data, making the assessment more 
practical for real-world forecasting scenarios. As a result, the stacking algorithm was selected to forecast 
the CNC scrap rate across the evaluated models. 

 

 
Figure 14. Actual VS Predicted Model 1 

 

 
Figure 15. Actual VS Predicted Model 2 

 

 
Figure 16. Actual vs Predicted Model 3 

 
As shown in Figure 17, 18, and 19, the results indicate that the projected scrap rates for Models 1, 

2, and 3 exhibit some irregularity. This variability is partly due to excluding Sunday data, as the factory 
is typically shut down on that day. Despite this introduced irregularity, the figure achieves the objective 
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of predicting product scrap rates. The mean value for all models is below 0.08, demonstrating both high 
accuracy and precision. Such reliable forecasts can significantly support preventive maintenance efforts 
by helping prevent equipment anomalies or unexpected increases in scrap rates. 

 

 
Figure 17. Result Predicted Model 1 

 

 
Figure 18. Result Predicted Model 2 

 

 
Figure 19. Result Predicted Model 3 

 
Percentage Different Error Between Actual and Predicted Data 

Table 3 indicates that Model 1’s Mean Absolute Percentage Error (MAPE) was 75.64%, suggesting 
its forecasts were off by an average of about three-quarters of the actual value. Model 2 performed 
somewhat better with a MAPE of 42.58%, but this still reflects a considerable deviation. Model 3 yielded 
the most accurate forecasts, recording a MAPE of 39.35%. While this error rate is still high, it is notably 
lower than the other two models. 

In summary, Model 3 (HM73-10C300LFTR) was the most accurate of the three according to 
MAPE results. Nonetheless, a 39.35% error rate implies there is room for improvement. Future work 
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could involve refining model parameters, experimenting with alternative algorithms, or incorporating 
additional variables to enhance prediction accuracy. 

 
Table 3. MAPE result using the Best Model 

Keyword Model MAPE (%) 
Model 1 HA00-08464LFTR 75.64 
Model 2 HA00-17359ALFTR 42.58 
Model 3 HM73-10C300LFTR 39.35 

 
Table 4. Data Actual and Predicted 

Date 
Model 1 Model 2 Model 3 

Actual Predicted Actual Predicted Actual Predicted 
1/1/2023 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2/1/2023 0.007857 0.039392 0.027500 0.026410 0.043750 0.056516 
3/1/2023 0.017833 0.027770 0.015692 0.030988 0.010000 0.072100 
4/1/2023 0.000000 0.000000 0.000000 0.001845 0.000000 0.000055 
5/1/2023 0.000000 0.000000 0.000000 0.050570 0.000000 0.000000 
6/1/2023 0.000000 0.000000 0.000000 0.024763 0.000000 0.000000 
7/1/2023 0.000000 0.000000 0.000000 0.005484 0.000000 0.001775 
8/1/2023 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
9/1/2023 0.000000 0.000000 0.000000 0.005484 0.000000 0.018987 
10/1/2023 0.000000 0.000000 0.000000 0.013252 0.000000 0.056276 
11/1/2023 0.000000 0.000000 0.000000 0.070256 0.000000 0.055354 
12/1/2023 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
13/1/2023 0.016000 0.051100 0.060000 0.034462 0.052500 0.000000 
14/1/2023 0.015000 0.036367 0.055000 0.064255 0.035000 0.000000 
15/1/2023 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
16/1/2023 0.005500 0.091671 0.024857 0.053000 0.030000 0.000000 
17/1/2023 0.006889 0.034749 0.021250 0.064390 0.017143 0.000000 
18/1/2023 0.007000 0.024515 0.031667 0.024337 0.030667 0.000000 
19/1/2023 0.015231 0.024515 0.037000 0.023981 0.017625 0.000000 
20/1/2023 0.009545 0.000000 0.023750 0.074887 0.035667 0.000000 
21/1/2023 0.000000 0.009162 0.000000 0.005484 0.000000 0.051889 
22/1/2023 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
23/1/2023 0.000000 0.027770 0.000000 0.020673 0.000000 0.091396 
24/1/2023 0.000000 0.032957 0.000000 0.019132 0.000000 0.059099 
25/1/2023 0.009545 0.003144 0.052500 0.005484 0.045714 0.003245 
26/1/2023 0.004040 0.000000 0.022444 0.045769 0.025000 0.000000 
27/1/2023 0.008077 0.031727 0.024800 0.062600 0.043750 0.000000 
28/1/2023 0.021400 0.031495 0.024667 0.057968 0.028000 0.000000 
29/1/2023 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
30/1/2023 0.006679 0.000000 0.025250 0.074887 0.040000 0.000000 
31/1/2023 0.008560 0.014994 0.027778 0.021285 0.000000 0.090816 

 
Dashboard for Monitoring the Data 

The dashboard, built in Power BI, transforms the Jupyter Notebook analysis into a visually 
engaging interface with filtering capabilities, offering fresh insights into the data. As discussed in the 
method section, the u-chart is essential for monitoring process stability. By integrating the u-chart into 
the dashboard, users can easily correlate process control information with other relevant datasets. 

Figures 20, 21, and 22 illustrate the Power BI dashboard. Card visualizations provide key metrics 
for all data, while filtering options allow users to focus on specific models or machines as needed. The 
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line charts in Figures 21 and 22 utilize a basic control chart, including upper, center, and lower limits. 
These limits apply to the entire dataset, not just a single model. When filters are applied, the scrap rate 
is generally under control, though occasional anomalies still appear on certain dates. 

 

 
Figure 20. Dashboard HOME 

 

 
Figure 21. Dashboard 2022 

 

 
Figure 22. Dashboard 2023 
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4.2. Discussion 

Air coil output quality measurement can be obtained through the analysis of scrap data generated 
by the CNC machine. At various instances, the occurrence of diverse air coil scrap is observed. These 
varied scrap occurrences indicate a complex interplay of factors, including tool wear, machine 
calibration, material inconsistencies, or even operator skill levels. Each factor potentially influences the 
final product quality (references). 

Visualizing the scrap rates and production data via the dashboard provides a valuable lens 
through which anomalies and fluctuations become immediately apparent. The u-chart, as a monitoring 
instrument, enables practitioners to detect variations beyond normal statistical limits (Ieren et al., 2020; 
Tang et al., 2019). Such an analysis highlights the importance of establishing evidence-based 
benchmarks for identifying when the process deviates from its intended parameters. However, while 
u-charts help reveal non-conformance, they do not inherently explain the root causes, thus requiring 
deeper diagnostic efforts—like root cause analysis or additional process measurements—to fully 
understand why anomalies persist. 

When forecasting scrap rates, the decision to employ advanced machine learning models—KNN 
and Random Forest—reflects an acknowledgment that simple statistical tools may be insufficient to 
capture the complexity of manufacturing data (Soori, et al., 2023; Zhang & Jiang, 2019). Nevertheless, 
the models’ initial performance fell short of expectations, likely due to factors such as data quality, 
unmodeled process variability, or insufficient feature engineering. In response, the study adopted a 
stacking approach, combining multiple predictive models to harness their individual strengths. 
Although stacking notably improved performance for Models 2 and 3, Model 1 did not exhibit the same 
gains. This discrepancy may point to unique process conditions, variations in machine health, or 
parameter interactions not captured by the ensemble. 

Choosing the stacking method over RF alone, even for Model 1, where RF showed higher peaks, 
was guided by stacking’s closer alignment with actual data. This choice highlights a key challenge in 
predictive modeling: finding the right balance between pure predictive accuracy and stable, reliable 
performance. Opting for the model that best matches real-world patterns, rather than one that is only 
statistically strong, demonstrates a practical approach to model selection. 

Concluding that ensemble stacking is the preferred method for predicting scrap rates represents 
a move toward more advanced, data-driven preventive maintenance strategies. It suggests that no 
single model type will always perform best and that combining various approaches can yield more 
robust result. However, it is important to recognize that forecasting accuracy can be influenced by 
factors such as production schedule changes, maintenance timing, material quality, and evolving 
customer requirements. 

While this study meets its primary goal of improving predictive capabilities, it also suggests the 
need for ongoing refinement. Future research may incorporate additional data sources—like sensor 
readings, operator logs, or environmental conditions—to improve the models’ contextual 
understanding. Further enhancements could involve fine-tuning model parameters, revisiting the 
chosen features, or experimenting with more advanced algorithms like gradient boosting or neural 
networks. In this way, these findings both confirm the value of ensemble methods in preventive 
maintenance and encourage further investigation into the complex factors affecting CNC machine 
performance and product quality. 
 

5. Conclusion  

The study reveals the prospective application of u-charts and machine learning regression models 
to enhance preventive maintenance strategies for CNC machines. By analyzing production and scrap 
data, we effectively predicted scrap rates, enabling more informed decision-making and resource 
allocation. 

The u-charts proved valuable for visualizing fluctuations in scrap rates over time, making it easier 
to identify patterns and anomalies. Understanding these patterns led to a significant reduction in waste, 
which highlights the importance of data visualization in production management. 
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Furthermore, the efficacy of regression models based on machine learning by using random forest 
(RF) and k-Nearest Neighbor (kNN) showed strong predictive capabilities. Training these models with 
historical production data allowed us to anticipate scrap rates accurately, reduce downtime, and 
improve overall efficiency. 

In addition, our study has revealed the complex dynamics relationship between u-charts and 
machine learning models. U-charts helped identify areas needing attention, guiding model refinement 
by identifying key variables and unusual data points. In turn, machine learning forecasts provided 
insights that could be monitored and tracked through u-charts, further improving process oversight. 

This study’s findings are constrained by several limitations. The results depend on high-quality, 
comprehensive data and may not generalize to other machines or contexts. Statistical assumptions 
about distributions and independence may not hold, and model selection was limited. Practical factors 
like cost, scheduling, and training were not fully addressed. 

Future research should explore more advanced machine learning methods, apply the approach in 
varied settings, incorporate real-time analytics, and consider broader factors such as economic 
constraints and operator skills. This would enhance reliability, applicability, and overall understanding 
of predictive maintenance strategies. 

To summarize, the integration of these methodologies into the preventive maintenance plan of CNC 
machines has demonstrated advantages in optimizing manufacturing activities, enhancing the standard 
of the final product, and minimizing material waste. The present study highlights the prospects of 
utilizing data analysis and forecasting tools to transform the maintenance tactics implemented in the 
manufacturing sector. 
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