Product Quality Output Measurement for Preventive Maintenance on Computer Numerical Control (CNC) Machines at an Electronic Manufacturing Industry
DOI:
https://doi.org/10.62048/qjms.v2i1.56Kata Kunci:
Computer Numerical Control, overall equipment effectiveness, preventive maintenance, predictive maintenance, quality improvement, machine learningAbstrak
Mesin Computer Numerical Control (CNC) menghilangkan material dari sebuah benda kerja dengan menggunakan kontrol digital untuk menghasilkan komponen yang dirancang secara khusus. Penting untuk menjaga akurasi dan presisi mesin ini di bawah kondisi yang menantang setelah penggunaan jangka panjang. Penelitian ini bertujuan untuk mengevaluasi kualitas produk CNC menggunakan Overall Equipment Effectiveness (OEE) dan meningkatkan kinerja jangka panjang melalui pendekatan berbasis data. Metode penelitian ini berfokus pada analisis laju scrap, penggunaan u-chart untuk memantau stabilitas, serta penerapan model regresi machine learning—K-Nearest Neighbour (KNN) dan Random Forest (RF)—untuk memprediksi laju scrap. Prediksi tersebut membantu mengidentifikasi waktu yang tepat untuk melakukan pemeliharaan pencegahan, sehingga presisi mesin dapat tetap terjaga seiring waktu. Penelitian ini juga memanfaatkan visualisasi hasil menggunakan Microsoft Power BI untuk meningkatkan interpretasi data dan memfasilitasi respons cepat terhadap potensi masalah. Hasil penelitian menunjukkan bahwa RF memiliki kinerja lebih baik dibandingkan KNN dalam memprediksi laju scrap. Penggunaan stacking pada model-model tersebut lebih lanjut meningkatkan akurasi, sehingga memberikan alat pengambilan keputusan yang lebih andal dalam mengantisipasi masalah kualitas. Dengan mendeteksi anomali secara dini, produsen dapat melakukan pemeliharaan tepat waktu, meminimalkan waktu henti, serta memperpanjang umur operasional mesin CNC. Kesimpulannya, integrasi analisis laju scrap, pengendalian proses statistik, dan teknik pembelajaran mesin yang canggih dapat secara efektif menjaga kualitas produk serta mengurangi ketidakakuratan. Perusahaan sebaiknya mengadopsi perencanaan pemeliharaan yang lebih proaktif dengan memanfaatkan peramalan yang lebih baik.
Referensi
Alquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., & Rasheed, M. B. (2022). A performance comparison of machine learning algorithms for load forecasting in smart grid. IEEE Access, 10, 48419–48433. https://doi.org/10.1109/ACCESS.2022.3171270
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
Dewi, S., Alhilman, J., & Atmaji, F. T. D. (2020, May). Evaluation of effectiveness and cost of machine losses using overall equipment effectiveness (OEE) and overall equipment cost loss (OECL) methods, a case study on Toshiba CNC machine. In IOP Conference Series: Materials Science and Engineering (Vol. 847, No. 1, p. 012020). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/847/1/012020
Haddad, T., Shaheen, B. W., & Németh, I. (2021). Improving overall equipment effectiveness (OEE) of extrusion machine using lean manufacturing approach. Manufacturing Technology, 21(1), 56–64. https://doi.org/10.21062/mft.2021.006
Ieren, T. G., Kuje, S., Asongo, A. I., & Eraikhuemen, I. B. (2020). Application of statistical quality control in monitoring the production, packaging and marketing process of sachet water. Journal of Scientific Research and Reports, 26(9), 32–45. https://doi.org/10.9734/jsrr/2020/v26i930307
Lee, H., Kang, D. H., & Jeong, S. C. (2022). A study on the predictive maintenance system for CNC facilities based on intelligent cutting tool load prediction. ICIC Express Letters, 16(3), 265–273. https://doi.org/10.24507/icicel.16.03.265
Liu, W., Zhang, S., Lin, J., Xia, Y., Wang, J., & Sun, Y. (2022, August 1). Advancements in accuracy decline mechanisms and accuracy retention approaches of CNC machine tools: A review. International Journal of Advanced Manufacturing Technology, 121(11–12), 7087–7115. https://doi.org/10.1007/s00170-022-09720-0
Mishra, R., Kiran, M. S. N. S., Maheswaram, M., Upadhyay, A., & Singh, B. (2023, June). Investigation of optimal feature for milling chatter identification using supervised machine learning techniques. Journal of Engineering Research, 100138. https://doi.org/10.1016/j.jer.2023.100138
Moghaddam, K. S. (2015, February). Preventive maintenance and replacement optimization on CNC machine using multiobjective evolutionary algorithms. International Journal of Advanced Manufacturing Technology, 76(9–12), 2131–2146. https://doi.org/10.1007/s00170-014-6391-5
Nagahisarchoghaei, M., Dodd, J., Nagahi, M., Ghanbari, G., & Poudyal, S. (2020, October).
Analysis of a warranty-based quality management system in the construction industry. In 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI 2020). IEEE. https://doi.org/10.1109/ICDABI51230.2020.9325692
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015, August).
Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804–818. https://doi.org/10.1016/j.oregeorev.2015.01.001
Ruiz Rodríguez, M. L., Kubler, S., de Giorgio, A., Cordy, M., Robert, J., & Le Traon, Y. (2022, December). Multi-agent deep reinforcement learning based predictive maintenance on parallel machines. Robotics and Computer-Integrated Manufacturing, 78, 102406. https://doi.org/10.1016/j.rcim.2022.102406
Shahin, M., Chen, F.F., Hosseinzadeh, A. et al. (2023). Using machine learning and deep learning algorithms for downtime minimization in manufacturing systems: an early failure detection diagnostic service. International Journal of Advanced Manufacturing Technology 128, 3857–3883. https://doi.org/10.1007/s00170-023-12020-w
Singh, S., Khamba, J. S., & Singh, D. (2021, April 1). Analysis and directions of OEE and its integration with different strategic tools. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235(2), 594–605. https://doi.org/10.1177/0954408920952624
Soori, M., Arezoo, B., & Dastres, R. (2023, January). Machine learning and artificial intelligence in CNC machine tools: A review. Sustainable Manufacturing and Service Economics, 100009. https://doi.org/10.1016/j.smse.2023.100009
Tang, D., Tanli, M., Jiang, Y., Wan, X., & Peng, R. (2019, September). Product quality monitoring of Shewhart chart based on function integration for manufacturing factory. In Journal of Physics: Conference Series, 1302(4), 042044. Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1302/4/042044
Traini, E., Bruno, G., D’Antonio, G., & Lombardi, F. (2019). Machine learning framework for predictive maintenance in milling. IFAC-PapersOnLine, 52(13), 177–182. https://doi.org/10.1016/j.ifacol.2019.11.172
Tsarouhas, P. H. (2019, January). Improving operation of the croissant production line through overall equipment effectiveness (OEE): A case study. International Journal of Productivity and Performance Management, 68(1), 88–108. https://doi.org/10.1108/IJPPM-02-2018-0060
Tsarouhas, P. H. (2020, May). Overall equipment effectiveness (OEE) evaluation for an automated ice cream production line: A case study. International Journal of Productivity and Performance Management, 69(5), 1009–1032. https://doi.org/10.1108/IJPPM-03-2019-0126
Zhang, C., & Jiang, P. (2019). Sustainability Evaluation of Process Planning for Single CNC Machine Tool under the Consideration of Energy-Efficient Control Strategies Using Random Forests. Sustainability, 11(11), 3060. https://doi.org/10.3390/su11113060
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Studi Multidisiplin Qomaruna
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Works in this journal are licensed under a Attribution-NonCommercial-ShareAlike 4.0 International.