Investigation and Evaluation of Cutting Temperature with Various Cooling Conditions and Parameters in Milling Machining Process
DOI:
https://doi.org/10.62048/qjms.v3i1.128Keywords:
cutting temperature, cooling condition, machining parametersAbstract
In the manufacturing industry, especially those engaged in the machining process, the results of product quality and tool life are always the main focus of the industry. These factors can be influenced by the friction that occurs between the cutting tool or chisel and the workpiece during the machining process which will cause high cutting temperatures so that the cutting temperature problem must be resolved immediately. This study aims to analyze the effect of machining parameters and conditions on the cutting temperature in the milling machining process. Variations in machining conditions and parameters used include dry, flood, and air-cooling techniques; Spindle speed parameters 500, 800, and 1100 rpm; Feed rate parameters 60, 100, and 140 mm/min. The method used is an experimental method. The cutting temperature was measured using an infrared thermometer. The results of the analysis in this study indicate that the combination of variables in the milling machining process that obtains the most optimal response value to reduce the cutting temperature is the use of the flood coolant cooling technique, then a spindle speed of 800 rpm, and a feed rate of 100 mm/min.
References
Abbas, A. T., Anwar, S., Abdelnasser, E., Luqman, M., Abu Qudeiri, J. E., & Elkaseer, A. (2021). Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316. Materials, 14(4), 1–15. https://doi.org/10.3390/ma14040903
Achadiah, R., Setyarini, P. H., Pambayoen, M. A., Djunaidi, I. H., & Azizah, D. S. (2021). Effect of feed rate and depth of cut on face milling process on surface roughness of Al–Mg alloy using CNC milling machine 3-axis. Technium: Romanian Journal of Applied Sciences and Technology, 3(11), 11–18. https://doi.org/10.47577/technium.v3i11.5396
Akiyama, Y., Iwaki, M., Komagamine, Y., Minakuchi, S., & Kanazawa, M. (2023). Effect of spindle speed and feed rate on surface roughness and milling duration in the fabrication of milled complete dentures: An in vitro study. Applied Sciences, 13(24), Article 13338. https://doi.org/10.3390/app132413338
Boswell, B., Islam, M. N., Davies, I. J., Ginting, Y. R., & Ong, A. K. (2017). A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. The International Journal of Advanced Manufacturing Technology, 92(1–4), 321–340. https://doi.org/10.1007/s00170-017-0142-3
Davim, J. P. (Ed.). (2008). Machining: Fundamentals and recent advances. Springer.
Deng, Z., Zhang, H., Fu, Y., Wan, L., & Lv, L. (2018). Research on intelligent expert system of green cutting process and its application. Journal of Cleaner Production, 185, 904–911. https://doi.org/10.1016/j.jclepro.2018.02.246
Dhar, N. R., Islam, M. W., Islam, S., & Mithu, M. A. H. (2006). The influence of minimum quantity lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI 1040 steel. Journal of Materials Processing Technology, 171(1), 93–99. https://doi.org/10.1016/j.jmatprotec.2005.06.047
Ekinovic, S., Prcanovic, H., & Begovic, E. (2015). Investigation of influence of MQL machining parameters on cutting forces during MQL turning of carbon steel St52-3. Procedia Engineering, 132, 608–614. https://doi.org/10.1016/j.proeng.2015.12.538
Freddi, A., & Salmon, M. (2019). Introduction to the Taguchi method. In Springer tracts in mechanical engineering (pp. 159–180). Springer. https://doi.org/10.1007/978-3-319-95342-7_7
Gao, Z., Zhang, H., Ji, M., Zuo, C., & Zhang, J. (2024). Influence of various cooling and lubrication conditions on tool wear and machining quality in milling Inconel 718. International Journal of Precision Engineering and Manufacturing–Green Technology, 11(2), 391–406. https://doi.org/10.1007/s40684-023-00558-9
Grzesik, W., & Ruszaj, A. (2021). Hybrid manufacturing processes: Physical fundamentals, modelling and rational applications (1st ed.). Springer.
Habiby, M. N. A. (2024). Proses pemesinan CNC milling: Studi eksperimental tentang parameter cutting direction dan spindle speed. Zahira Media Publisher.
Habiby, M. N. A. (2025). An overview of preparation and properties of nanofluid as cutting fluid using vegetable oil for sustainable machining process. International Journal of Mechanical Engineering Technologies and Applications, 6(1), 58–82. https://doi.org/10.21776/mechta.2025.006.01.6
Habiby, M. N. A., Istianto, P. V., & Fahmi, M. (2023). Optimization of cutting direction parameters for a CNC milling machining process pocket on structure and surface roughness on Postep motorcycle spare parts. International Journal of Mechanical Engineering Technologies and Applications, 4(2), 135–143. https://doi.org/10.21776/mechta.2023.004.02.3
Karaguzel, U., & Budak, E. (2018). Investigating effects of milling conditions on cutting temperatures through analytical and experimental methods. Journal of Materials Processing Technology, 262, 532–540. https://doi.org/10.1016/j.jmatprotec.2018.07.024
Kiswanto, G., Azmi, M., Mandala, A., & Ko, T. J. (2019). The effect of machining parameters on surface roughness in low-speed micro-milling of Inconel 718. IOP Conference Series: Materials Science and Engineering, 654(1), Article 012014. https://doi.org/10.1088/1757-899X/654/1/012014
Kiswanto, G., Zariatin, D. L., & Ko, T. J. (2014). The effect of spindle speed, feed rate and machining time on surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. Journal of Manufacturing Processes, 16(4), 435–450. https://doi.org/10.1016/j.jmapro.2014.05.003
Kui, G. W. A., Islam, S., Reddy, M. M., et al. (2022). Recent progress and evolution of coolant usages in conventional machining methods: A comprehensive review. The International Journal of Advanced Manufacturing Technology, 119, 3–40. https://doi.org/10.1007/s00170-021-08182-0
Laghari, R. A., He, N., Jamil, M., Hussain, M. I., Gupta, M. K., & Krolczyk, G. M. (2023). A state-of-the-art review on recently developed sustainable and green cooling/lubrication technologies in machining metal matrix composites (MMCs). International Journal of Precision Engineering and Manufacturing–Green Technology, 10(6), 1637–1660. https://doi.org/10.1007/s40684-023-00521-8
Liu, J., Liu, C., Tong, H., et al. (2025). Optimization of process parameters for minimizing the temperature field of high-speed milling of titanium alloy thin-walled parts. International Journal on Interactive Design and Manufacturing, 19, 2415–2430. https://doi.org/10.1007/s12008-024-01806-1
Liu, S., Zhang, Z., Zhao, J., Wu, X., Hong, X., & Liu, H. (2023). A comparative study on milling-induced damages and residual tensile strength during milling of thermoplastic and thermoset carbon fibre reinforced polymers. Polymer Testing, 125, Article 108132. https://doi.org/10.1016/j.polymertesting.2023.108132
Lubis, S. M., Adianto, S. D., & Ericsen, E. (2019). Effect of cutting speed on cutting tool temperature and surface roughness of AISI 4340 steel. IOP Conference Series: Materials Science and Engineering, 508(1), Article 012053. https://doi.org/10.1088/1757-899X/508/1/012053
Jebaraj, M., Pradeep Kumar, M., & Anburaj, R. (2020). Effect of LN? and CO? coolants in milling of 55NiCrMoV7 steel. Journal of Manufacturing Processes, 53, 318–327. https://doi.org/10.1016/j.jmapro.2020.02.040
Mubarok, K., Saputro, A., & Mustajib, M. I. (2023). Exploratory investigation on the influence of machining parameters on surface roughness and tool wear in the turning process of steel ST-42. IJSEIT, 8(1), 487–492. https://doi.org/10.21107/ijseit.v8i1.24559
Musfirah, A. H., Ghani, J. A., Che Haron, C. H., & Kasim, M. S. (2015). Effect of cutting parameters on cutting zone in cryogenic high-speed milling of Inconel 718 alloy. Jurnal Teknologi, 77(27), 1–7. https://doi.org/10.11113/jt.v77.6877
Ogedengbe, T. S., Okediji, A. P., Yussouf, A. A., Aderoba, O. A., Abiola, O. A., Alabi, I. O., & Alonge, O. I. (2019). The effects of heat generation on cutting tool and machined workpiece. Journal of Physics: Conference Series, 1378(2), Article 022012. https://doi.org/10.1088/1742-6596/1378/2/022012
Pereira Guimarães, B. M., da Silva Fernandes, C. M., Amaral de Figueiredo, D., Correia Pereira da Silva, F. S., & Macedo Miranda, M. G. (2022). Cutting temperature measurement and prediction in machining processes: Comprehensive review and future perspectives. The International Journal of Advanced Manufacturing Technology, 120(5–6), 2849–2878. https://doi.org/10.1007/s00170-022-08957-z
Pollák, M., Ko?iško, M., Petrus, J., Grozav, S. D., & Ceclan, V. (2022). Research into the impact of spindle speed and feed rate changes on the life of a deep-drilling technology tool. Machines, 10(4), Article 268. https://doi.org/10.3390/machines10040268
Prabakaran, J., David, A., Russel, M. R. P., & Immanuel, D. (2024). Thermoelectric cooling for machining of In 825 superalloy: An experimental study. The International Journal of Advanced Manufacturing Technology, 130(9–10), 4387–4396. https://doi.org/10.1007/s00170-024-12997-y
Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2014). A review of sensor system and application in milling process for tool condition monitoring. Research Journal of Applied Sciences, Engineering and Technology, 7(10), 2083–2097. https://doi.org/10.19026/rjaset.7.502
Ruggiero, A., D’Amato, R., Merola, M., Valášek, P., & Müller, M. (2016). On the tribological performance of vegetal lubricants: Experimental investigation on Jatropha curcas L. oil. Procedia Engineering, 149, 431–437. https://doi.org/10.1016/j.proeng.2016.06.689
Sharma, A., & Dwivedi, V. K. (2020). Effect of spindle speed, feed rate and cooling medium on the burr structure of aluminium through milling. IOP Conference Series: Materials Science and Engineering, 998(1), Article 012028. https://doi.org/10.1088/1757-899X/998/1/012028
Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid-based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1–18.
Sharma, J., & Sidhu, B. S. (2014). Investigation of effects of dry and near-dry machining on AISI D2 steel using vegetable oil. Journal of Cleaner Production, 66, 619–623. https://doi.org/10.1016/j.jclepro.2013.11.042
Sharma, V. S., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49(6), 435–453. https://doi.org/10.1016/j.ijmachtools.2008.12.010
Sugiantoro, B., Sutarno, S., Sakuri, S., & Rusnaldhy, R. (2019). Studies of cold cooling using bio-nanofluids: Characteristics and applications in milling operations on high-hardness steels. Jurnal Rekayasa Mesin, 10(1), 77–86. https://doi.org/10.21776/ub.jrm.2019.010.01.10
Suresh, P. V. S., Rao, P. V., & Deshmukh, S. G. (2002). A genetic algorithmic approach for optimization of surface roughness prediction model. International Journal of Machine Tools and Manufacture, 42(6), 675–680. https://doi.org/10.1016/S0890-6955(02)00005-6
Tefera, A. G., Sinha, D. K., & Gupta, G. (2023). Experimental investigation and optimization of cutting parameters during dry turning process of copper alloy. Journal of Engineering and Applied Science, 70(1), 1–26. https://doi.org/10.1186/s44147-023-00314-5
Tuan, N. M., Long, T. T., & Ngoc, T. B. (2023). Study of effects of MoS? nanofluid MQL parameters on cutting forces and surface roughness in hard turning using CBN insert. Fluids, 8(7), Article 188. https://doi.org/10.3390/fluids8070188
Wang, H., Sun, J., Li, J., Lu, L., & Li, N. (2016). Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites. The International Journal of Advanced Manufacturing Technology, 82(9–12), 1517–1525. https://doi.org/10.1007/s00170-015-7479-2
Zha, X., Qin, H., Yuan, Z., Xi, L., Zhang, T., & Jiang, F. (2024). Effect of cutting feed rate on machining performance and surface integrity in cutting process of Ti-6Al-4V alloy. The International Journal of Advanced Manufacturing Technology, 131(5–6), 2791–2809. https://doi.org/10.1007/s00170-023-12458-y
Zhang, G., Zhang, J., Fan, G., et al. (2023). The effect of chip formation on the cutting force and tool wear in high-speed milling Inconel 718. The International Journal of Advanced Manufacturing Technology, 127, 335–348. https://doi.org/10.1007/s00170-023-11551-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nuril Anwar Habiby , Moh. Bima Fahrosyid Rizki Abdillah, Ilvia Habsah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Works in this journal are licensed under a Attribution-NonCommercial-ShareAlike 4.0 International.




















