Investigasi dan Evaluasi Hasil Temperatur Pemotongan dengan Berbagai Kondisi dan Parameter Pendinginan pada Proses Pemesinan Milling

Penulis

  • Nuril Anwar Habiby Department of Mechanical and Industrial Engineering, Universitas Negeri Malang, Malang, Indonesia
  • Moh. Bima Fahrosyid Rizki Abdillah Department of Mechanical Engineering, Universitas Negeri Surabaya, Surabaya, Indonesia
  • Ilvia Habsah Faculty of Education, Universitas PGRI Kanjuruhan, Malang, Indonesia

DOI:

https://doi.org/10.62048/qjms.v3i1.128

Kata Kunci:

suhu pemotongan, kondisi pendinginan, Parameter Pemesinan

Abstrak

Dalam industri manufaktur khususnya yang bergerak dalam bidang proses pemesinan selalu menjadikan hasil kualitas produk dan masa pemakaian alat sebagai fokus utama industri. Faktor tersebut dapat dipengaruhi dari adanya gesekan yang terjadi antara alat potong atau pahat dan benda kerja pada saat proses pemesinan dijalankan yang akan menimbulkan suhu pemotongan yang tinggi sehingga masalah suhu pemotongan harus segera diatasi. Penelitian ini bertujuan untuk menganalisis pengaruh parameter dan kondisi pemesinan terhadap adanya suhu pemotongan pada proses pemesinan milling. Variasi kondisi dan parameter pemesinan yang digunakan yaitu meliputi Teknik pendinginan dry, flood, dan udara; Parameter spindle speed 500, 800, dan 1100 rpm; Parameter feed rate 60, 100, dan 140 mm/min. Metode yang digunakan yaitu metode eksperimen. Suhu pemotongan diukur menggunakan alat infrared thermometer. Hasil analisa pada penelitian ini menunjukkan bahwa kombinasi variabel pada proses pemesinan milling yang mendapatkan nilai respon paling optimal untuk meredam suhu pemotongan yaitu pada penggunaan teknik pendinginan flood coolant, kemudian spindle speed sebesar 800 rpm, dan feed rate sebesar 100 mm/min.

Referensi

Abbas, A. T., Anwar, S., Abdelnasser, E., Luqman, M., Abu Qudeiri, J. E., & Elkaseer, A. (2021). Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316. Materials, 14(4), 1–15. https://doi.org/10.3390/ma14040903

Achadiah, R., Setyarini, P. H., Pambayoen, M. A., Djunaidi, I. H., & Azizah, D. S. (2021). Effect of feed rate and depth of cut on face milling process on surface roughness of Al–Mg alloy using CNC milling machine 3-axis. Technium: Romanian Journal of Applied Sciences and Technology, 3(11), 11–18. https://doi.org/10.47577/technium.v3i11.5396

Akiyama, Y., Iwaki, M., Komagamine, Y., Minakuchi, S., & Kanazawa, M. (2023). Effect of spindle speed and feed rate on surface roughness and milling duration in the fabrication of milled complete dentures: An in vitro study. Applied Sciences, 13(24), Article 13338. https://doi.org/10.3390/app132413338

Boswell, B., Islam, M. N., Davies, I. J., Ginting, Y. R., & Ong, A. K. (2017). A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. The International Journal of Advanced Manufacturing Technology, 92(1–4), 321–340. https://doi.org/10.1007/s00170-017-0142-3

Davim, J. P. (Ed.). (2008). Machining: Fundamentals and recent advances. Springer.

Deng, Z., Zhang, H., Fu, Y., Wan, L., & Lv, L. (2018). Research on intelligent expert system of green cutting process and its application. Journal of Cleaner Production, 185, 904–911. https://doi.org/10.1016/j.jclepro.2018.02.246

Dhar, N. R., Islam, M. W., Islam, S., & Mithu, M. A. H. (2006). The influence of minimum quantity lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI 1040 steel. Journal of Materials Processing Technology, 171(1), 93–99. https://doi.org/10.1016/j.jmatprotec.2005.06.047

Ekinovic, S., Prcanovic, H., & Begovic, E. (2015). Investigation of influence of MQL machining parameters on cutting forces during MQL turning of carbon steel St52-3. Procedia Engineering, 132, 608–614. https://doi.org/10.1016/j.proeng.2015.12.538

Freddi, A., & Salmon, M. (2019). Introduction to the Taguchi method. In Springer tracts in mechanical engineering (pp. 159–180). Springer. https://doi.org/10.1007/978-3-319-95342-7_7

Gao, Z., Zhang, H., Ji, M., Zuo, C., & Zhang, J. (2024). Influence of various cooling and lubrication conditions on tool wear and machining quality in milling Inconel 718. International Journal of Precision Engineering and Manufacturing–Green Technology, 11(2), 391–406. https://doi.org/10.1007/s40684-023-00558-9

Grzesik, W., & Ruszaj, A. (2021). Hybrid manufacturing processes: Physical fundamentals, modelling and rational applications (1st ed.). Springer.

Habiby, M. N. A. (2024). Proses pemesinan CNC milling: Studi eksperimental tentang parameter cutting direction dan spindle speed. Zahira Media Publisher.

Habiby, M. N. A. (2025). An overview of preparation and properties of nanofluid as cutting fluid using vegetable oil for sustainable machining process. International Journal of Mechanical Engineering Technologies and Applications, 6(1), 58–82. https://doi.org/10.21776/mechta.2025.006.01.6

Habiby, M. N. A., Istianto, P. V., & Fahmi, M. (2023). Optimization of cutting direction parameters for a CNC milling machining process pocket on structure and surface roughness on Postep motorcycle spare parts. International Journal of Mechanical Engineering Technologies and Applications, 4(2), 135–143. https://doi.org/10.21776/mechta.2023.004.02.3

Karaguzel, U., & Budak, E. (2018). Investigating effects of milling conditions on cutting temperatures through analytical and experimental methods. Journal of Materials Processing Technology, 262, 532–540. https://doi.org/10.1016/j.jmatprotec.2018.07.024

Kiswanto, G., Azmi, M., Mandala, A., & Ko, T. J. (2019). The effect of machining parameters on surface roughness in low-speed micro-milling of Inconel 718. IOP Conference Series: Materials Science and Engineering, 654(1), Article 012014. https://doi.org/10.1088/1757-899X/654/1/012014

Kiswanto, G., Zariatin, D. L., & Ko, T. J. (2014). The effect of spindle speed, feed rate and machining time on surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. Journal of Manufacturing Processes, 16(4), 435–450. https://doi.org/10.1016/j.jmapro.2014.05.003

Kui, G. W. A., Islam, S., Reddy, M. M., et al. (2022). Recent progress and evolution of coolant usages in conventional machining methods: A comprehensive review. The International Journal of Advanced Manufacturing Technology, 119, 3–40. https://doi.org/10.1007/s00170-021-08182-0

Laghari, R. A., He, N., Jamil, M., Hussain, M. I., Gupta, M. K., & Krolczyk, G. M. (2023). A state-of-the-art review on recently developed sustainable and green cooling/lubrication technologies in machining metal matrix composites (MMCs). International Journal of Precision Engineering and Manufacturing–Green Technology, 10(6), 1637–1660. https://doi.org/10.1007/s40684-023-00521-8

Liu, J., Liu, C., Tong, H., et al. (2025). Optimization of process parameters for minimizing the temperature field of high-speed milling of titanium alloy thin-walled parts. International Journal on Interactive Design and Manufacturing, 19, 2415–2430. https://doi.org/10.1007/s12008-024-01806-1

Liu, S., Zhang, Z., Zhao, J., Wu, X., Hong, X., & Liu, H. (2023). A comparative study on milling-induced damages and residual tensile strength during milling of thermoplastic and thermoset carbon fibre reinforced polymers. Polymer Testing, 125, Article 108132. https://doi.org/10.1016/j.polymertesting.2023.108132

Lubis, S. M., Adianto, S. D., & Ericsen, E. (2019). Effect of cutting speed on cutting tool temperature and surface roughness of AISI 4340 steel. IOP Conference Series: Materials Science and Engineering, 508(1), Article 012053. https://doi.org/10.1088/1757-899X/508/1/012053

Jebaraj, M., Pradeep Kumar, M., & Anburaj, R. (2020). Effect of LN? and CO? coolants in milling of 55NiCrMoV7 steel. Journal of Manufacturing Processes, 53, 318–327. https://doi.org/10.1016/j.jmapro.2020.02.040

Mubarok, K., Saputro, A., & Mustajib, M. I. (2023). Exploratory investigation on the influence of machining parameters on surface roughness and tool wear in the turning process of steel ST-42. IJSEIT, 8(1), 487–492. https://doi.org/10.21107/ijseit.v8i1.24559

Musfirah, A. H., Ghani, J. A., Che Haron, C. H., & Kasim, M. S. (2015). Effect of cutting parameters on cutting zone in cryogenic high-speed milling of Inconel 718 alloy. Jurnal Teknologi, 77(27), 1–7. https://doi.org/10.11113/jt.v77.6877

Ogedengbe, T. S., Okediji, A. P., Yussouf, A. A., Aderoba, O. A., Abiola, O. A., Alabi, I. O., & Alonge, O. I. (2019). The effects of heat generation on cutting tool and machined workpiece. Journal of Physics: Conference Series, 1378(2), Article 022012. https://doi.org/10.1088/1742-6596/1378/2/022012

Pereira Guimarães, B. M., da Silva Fernandes, C. M., Amaral de Figueiredo, D., Correia Pereira da Silva, F. S., & Macedo Miranda, M. G. (2022). Cutting temperature measurement and prediction in machining processes: Comprehensive review and future perspectives. The International Journal of Advanced Manufacturing Technology, 120(5–6), 2849–2878. https://doi.org/10.1007/s00170-022-08957-z

Pollák, M., Ko?iško, M., Petrus, J., Grozav, S. D., & Ceclan, V. (2022). Research into the impact of spindle speed and feed rate changes on the life of a deep-drilling technology tool. Machines, 10(4), Article 268. https://doi.org/10.3390/machines10040268

Prabakaran, J., David, A., Russel, M. R. P., & Immanuel, D. (2024). Thermoelectric cooling for machining of In 825 superalloy: An experimental study. The International Journal of Advanced Manufacturing Technology, 130(9–10), 4387–4396. https://doi.org/10.1007/s00170-024-12997-y

Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2014). A review of sensor system and application in milling process for tool condition monitoring. Research Journal of Applied Sciences, Engineering and Technology, 7(10), 2083–2097. https://doi.org/10.19026/rjaset.7.502

Ruggiero, A., D’Amato, R., Merola, M., Valášek, P., & Müller, M. (2016). On the tribological performance of vegetal lubricants: Experimental investigation on Jatropha curcas L. oil. Procedia Engineering, 149, 431–437. https://doi.org/10.1016/j.proeng.2016.06.689

Sharma, A., & Dwivedi, V. K. (2020). Effect of spindle speed, feed rate and cooling medium on the burr structure of aluminium through milling. IOP Conference Series: Materials Science and Engineering, 998(1), Article 012028. https://doi.org/10.1088/1757-899X/998/1/012028

Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid-based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1–18.

Sharma, J., & Sidhu, B. S. (2014). Investigation of effects of dry and near-dry machining on AISI D2 steel using vegetable oil. Journal of Cleaner Production, 66, 619–623. https://doi.org/10.1016/j.jclepro.2013.11.042

Sharma, V. S., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49(6), 435–453. https://doi.org/10.1016/j.ijmachtools.2008.12.010

Sugiantoro, B., Sutarno, S., Sakuri, S., & Rusnaldhy, R. (2019). Studies of cold cooling using bio-nanofluids: Characteristics and applications in milling operations on high-hardness steels. Jurnal Rekayasa Mesin, 10(1), 77–86. https://doi.org/10.21776/ub.jrm.2019.010.01.10

Suresh, P. V. S., Rao, P. V., & Deshmukh, S. G. (2002). A genetic algorithmic approach for optimization of surface roughness prediction model. International Journal of Machine Tools and Manufacture, 42(6), 675–680. https://doi.org/10.1016/S0890-6955(02)00005-6

Tefera, A. G., Sinha, D. K., & Gupta, G. (2023). Experimental investigation and optimization of cutting parameters during dry turning process of copper alloy. Journal of Engineering and Applied Science, 70(1), 1–26. https://doi.org/10.1186/s44147-023-00314-5

Tuan, N. M., Long, T. T., & Ngoc, T. B. (2023). Study of effects of MoS? nanofluid MQL parameters on cutting forces and surface roughness in hard turning using CBN insert. Fluids, 8(7), Article 188. https://doi.org/10.3390/fluids8070188

Wang, H., Sun, J., Li, J., Lu, L., & Li, N. (2016). Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites. The International Journal of Advanced Manufacturing Technology, 82(9–12), 1517–1525. https://doi.org/10.1007/s00170-015-7479-2

Zha, X., Qin, H., Yuan, Z., Xi, L., Zhang, T., & Jiang, F. (2024). Effect of cutting feed rate on machining performance and surface integrity in cutting process of Ti-6Al-4V alloy. The International Journal of Advanced Manufacturing Technology, 131(5–6), 2791–2809. https://doi.org/10.1007/s00170-023-12458-y

Zhang, G., Zhang, J., Fan, G., et al. (2023). The effect of chip formation on the cutting force and tool wear in high-speed milling Inconel 718. The International Journal of Advanced Manufacturing Technology, 127, 335–348. https://doi.org/10.1007/s00170-023-11551-6

##submission.downloads##

Diterbitkan

2025-12-29

Cara Mengutip

Habiby , N. A. ., Abdillah, M. B. F. R. ., & Habsah, I. (2025). Investigasi dan Evaluasi Hasil Temperatur Pemotongan dengan Berbagai Kondisi dan Parameter Pendinginan pada Proses Pemesinan Milling. Jurnal Studi Multidisiplin Qomaruna, 3(1), 43–58. https://doi.org/10.62048/qjms.v3i1.128

Terbitan

Bagian

Teknik / Rekayasa

Artikel Serupa

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.