Experimental Study on the Effect of Valve Opening Variations in Fluid Flow on the Performance of a Pelton Turbine Simulator
DOI:
https://doi.org/10.62048/qjms.v1i2.36Keywords:
Power Plant, Pelton Turbine, Valve ApertureAbstract
The Pelton turbine is a microhydro device that can convert kinetic energy into electrical energy with the help of water flow. A valve is a piping system that functions to regulate, direct and control the rate of fluid flow by opening and closing the fluid flow. The steps used in this research include design methods, tool testing methods, data collection methods, and data analysis methods. The aim of this research is to determine the effect of varying valve openings of 30°, 60° and 90° on the values of rotational speed, torque, turbine power, generator power and system efficiency from the Pelton turbine simulator. From the test results and data processing, it was found that a 90° valve opening had better rotational speed, torque, turbine power and generator power, as well as system efficiency compared to 30° and 60° valve openings
References
Arifin, M. Z. (2017). Analisa Unjuk Kerja Dan Tingkat Kavitasi Pada Turbin Francis Di PT PJB Unit
Pembangkitan Brantas UNIT PLTA Sutami. [Tugas Akhir, Institut Teknologi 10 Nopember
Surabaya] Cakrawala96. (2021).
Turbin Francis: Pengertian, Komponen, Dan Prinsip Kerja. Turbin Francis. https://www.gesainstech.com/2021/06/turbin-francis-indonesia.html , diakses pada 4 November 2023
Cakrawala96. (2021). Turbin Kaplan: Pengertian Dan Cara Kerjanya. Turbin Kaplan.
https://www.gesainstech.com/2021/06/turbin-kaplan-reaksi.html diakses pada 4 November 2023.
Kulin, G., & Compton, P. R. (1975). A guide to methods and standards for the measurement of water flow (Vol. 13). US Department of Commerce, National Bureau of Standards.
Dietzel, F. (1996). Turbin Pompa dan Kompresor, cetakan ke-5. Penerbit Erlangga, Jakarta.
Hariri, H., & Zainal, F. (2018). Perancangan Dimensi Bagian Utama Turbin Uap Impuls Skala
Laboratorium. In Prosiding Seminar Rekayasa Teknologi (SemResTek), 297-305.
Gaskar, M., Ali, M., Muin, A., & Veranika, R. M. (2022). Pengujian Turbin Pelton Skala Mini dengan Dua Variasi Bentuk Sudu, Jurnal Desiminasi Teknologi, 10(1), 38-43. http://dx.doi.org/10.52333%2Fdestek.v10i1.857.
Husen, A. H. (2021). Uji Eksperimental Bentuk Sudu-sudu Pada Rancang Bangun Pembangkit Listrik Tenaga Listrik Turbin Pelton, Journal Presisi Jurusan Teknik Mesin FTI ISTN, 23(2), 32-42.
Irawan, H.,Syamsuri, S., & Rahmad (2018). Analisis Performansi Sistem Pembangkit Listrik Tenaga Air.
Jenis Turbin Pelton Dengan Variasi Bukaan Katup Dan Beban Lampu Menggunakan
Inverter. JHP17: Jurnal Hasil Penelitian, 3(01), 27-31.
Kontruksibesar.Com. (2022). Mengenal Jenis Turbin Pelton. Turbin Pelton
Ma'ruf, M. (2014). Unjuk Kerja Turbin Jenis Pelton Berdasarkan Variasi Bukaan Katup untuk Mengatur Keluaran Debit Aliran dan Head, TRANSMISI, 10(1), 25-32. https://doi.org/10.26905/jtmt.v10i1.4606
Maridjo, D., Puguh, B., Slameto, Suharto B., & Abdulrahman (2016). Rancang Bangun Turbin Pelton Mikrohidro. Jurnal Teknik Energi, 6(2), 510-514. https://doi.org/10.35313/energi.v6i2.1714
Purnomo, S. (2011). Pengaruh Jarak dan Ukuran Nosel Pada Putaran Sudu Terhadap Daya Listrik Turbin Pelton. Teknik Mesin, Universitas Gunadarma, 18, 14.
Saefudin, E., Kristayadi, T., Rifki, M., & Arifin, S. (2017). Turbin screw Untuk Pembangkit Listrik Skala Mikrohidro Ramah Lingkungan. Jurnal Rekayasa Hijau, 3(1), 233-244.
Setiawan, R. (2018). Rancang Bangun Alat Peraga Sederhana Sistem Turbin Pelton dengan Mengaplikasikan CAD/CAM dan 3D Printing.[Tugas Akhir, Universitas Islam Indonesia].
Siregar, A. S. (2019). Analisis Numerik Sudut Sudu Masuk dan Keluar Turbin Pelton terhadap Efisiensi Turbin.
Simamora, M. S. (2017). Perancangan Alat Uji Prestasi Turbin Pelton. Jurnal Mahasiswa Teknik, 3(1).
Sudrajat, A., & Bintoro, C. (2012). Penyempurnaan Pola Aliran Pada Turbin Francis Melalui
Penggunaan Material Komposit Pada Komponennya Untuk Meningkatkan Daya. Prosiding
Industrial Research Workshop and National Seminar, Vol. 3, 1-9.
Thake, J. (2000). The Micro-Hydro Pelton Turbine Manual. London: ITDG Pub
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Qomaruna Journal of Multidisciplinary Studies
This work is licensed under a Creative Commons Attribution 4.0 International License.
Works in this journal are licensed under a Attribution-NonCommercial-ShareAlike 4.0 International.