Optimization of Active Bandpass Filters for Weak Signals Using Quantum Particle Swarm Optimization: A Case Study of Electroencephalogram Signal Power Spectrum

Authors

  • Ellys Kumala Pramartaningthyas Program Studi Teknik Elektro, Universitas Qomaruddin, Gresik, Indonesia
  • Aini Lostari Program Studi Teknik Mesin, Universitas Qomaruddin, Gresik, Indonesia

DOI:

https://doi.org/10.62048/qjms.v1i2.46

Keywords:

Quantum Particle Swarm Optimization, Optimization, Average Power, Band Pass Filter, Electroencephalogram

Abstract

This research focuses on using Quantum Particle Swarm Optimization to optimize active bandpass filters for weak signals. Electroencephalograph signal data obtained from other researchers was used as a case study in this research. This Electroencephalogram signal data, consisting of 1280 signal amplitudes with a sampling frequency of 256 Hz, was characterized before being fed into Quantum Particle Swarm Optimization for optimization. The optimization goal of Quantum Particle Swarm Optimization is to achieve a signal frequency range with a maximum average power value. For bandpass filter design, the frequency range obtained from Quantum Particle Swarm Optimization is used as a reference. The frequency range of 9.9 Hz to 13 Hz and 15.99 Hz to 30 Hz provides optimal conditions. The filter design is based on the frequency range of optimization results and component values R1, R2, and R3 respectively 5.1M?, 10.2 M?, and 1M? with C1=C2=0.01?F for frequencies 9.9 Hz to 13 Hz, and a value of 1 .2M?, 2.4 M?, and 1M? each with C1=C2=0.01?F for frequencies 15.99 Hz to 30 Hz.

References

Fang, W., Sun, J., Ding, Y., Wu, X., & Xu, W. (2010). A review of quantum-behaved particle swarm

optimization. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 27(4), 336–348. https://doi.org/10.4103/0256-4602.64601

Flori, A., Oulhadj, H., & Siarry, P. (2022). Quantum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization. Computational Optimization and Applications, 82(2), 525–559. https://doi.org/10.1007/S10589-022-00362-2/METRICS

Luitel, B., & Venayagamoorthy, G. K. (2010). Particle swarm optimization with quantum infusion for system identification. Engineering Applications of Artificial Intelligence, 23(5), 635–649. https://doi.org/10.1016/J.ENGAPPAI.2010.01.022

Mikki, S. M., & Kishk, A. A. (2006). Quantum particle swarm optimization for electromagnetics. IEEE Transactions on Antennas and Propagation, 54(10), 2764–2775.

https://doi.org/10.1109/TAP.2006.882165

Mundy-Castle, A. C. (1957). The electroencephalogram and mental activity. Electroencephalography and

Clinical Neurophysiology, 9(4), 643–655. https://doi.org/10.1016/0013-4694(57)90085-8

Otniel Windrayadi, F., Rahmatullah, D., Winarno, I., Teknik Elektro, J., & Hang Tuah, U. (2018).

Optimasi Power System Stabilizer (PSS) pada Generator Multi Mesin Untuk Mengurangi Osilasi

Menggunakan Particle Swarm Optimization (PSO). SinarFe7, 1(1), 154–163.

https://journal.fortei7.org/index.php/sinarFe7/article/view/164

Petersén, I., & Eeg-Olofsson, O. (1971). The development of the electroencephalogram in normal

children from the age of 1 through 15 years. Non-paroxysmal activity. Neuropädiatrie, 2(3), 247–304. https://doi.org/10.1055/S-0028-1091786/BIB

Siuly, S., Li, Y., & Zhang, Y. (2016). Electroencephalogram (EEG) and Its Background. 3–21.

https://doi.org/10.1007/978-3-319-47653-7_1

Subha, D. P., Joseph, P. K., Acharya U, R., & Lim, C. M. (2010). EEG signal analysis: a survey. Journal of

Medical Systems, 34(2), 195–212. https://doi.org/10.1007/S10916-008-9231-Z/METRICS

Sun, J., Xu, W., & Liu, J. (2005). Parameter Selection of Quantum-Behaved Particle Swarm

Optimization. Lecture Notes in Computer Science, 3612(PART III), 543–552.

https://doi.org/10.1007/11539902_66

Tharwat, A., & Hassanien, A. E. (2019). Quantum-Behaved Particle Swarm Optimization for

Parameter Optimization of Support Vector Machine. Journal of Classification, 36(3), 576–598.

https://doi.org/10.1007/S00357-018-9299-1/METRICS

Wulansari, R., Contesa Dajamal, E., Darmanto Jurusan Informatika, T., Mipa, F., & Jenderal Achmad Yani Jl Terusan Sudirman, U. (2016). Klasifikasi Sinyal EEG terhadap Rangsangan Suara

Menggunakan Power Spectral Density dan Multilayer Perceptron. Prosiding Sains Nasional Dan Teknologi, 1(1). https://doi.org/10.36499/PSNST.V1I1.1521.

Yang, S., Wang, M., & Jiao, L. (2004). A quantum particle swarm optimization. Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, 1, 320–324.

https://doi.org/10.1109/CEC.2004.1330874

Zhou, N. R., Xia, S. H., Ma, Y., & Zhang, Y. (2022). Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy. Quantum Information Processing, 21(2), 1–23. https://doi.org/10.1007/S11128-021-03380-X/METRICS

Published

2024-10-16

How to Cite

Pramartaningthyas, E. K., & Lostari, A. (2024). Optimization of Active Bandpass Filters for Weak Signals Using Quantum Particle Swarm Optimization: A Case Study of Electroencephalogram Signal Power Spectrum. Qomaruna Journal of Multidisciplinary Studies, 1(2), 65–73. https://doi.org/10.62048/qjms.v1i2.46

Issue

Section

Engineering