Optimasi Filter Bandpass Aktif untuk Sinyal Lemah Menggunakan Quantum Particle Swarm Optimization pada Studi Kasus Spektral Daya Sinyal Electroencephalogram
DOI:
https://doi.org/10.62048/qjms.v1i2.46Kata Kunci:
Quantum Particle Swarm Optimization , Optimasi,Daya rata-rata,Filter Band Pass, ElectroencephalogramAbstrak
Penelitian ini berfokus pada penggunaan Quantum Particle Swarm Optimization untuk mengoptimalkan filter bandpass aktif untuk sinyal lemah. Data sinyal Electroencephalogram yang diperoleh dari peneliti lain digunakan sebagai studi kasus dalam penelitian ini. Data sinyal Electroencephalogram ini, yang terdiri dari 1280 amplitudo sinyal dengan frekuensi sampling 256 Hz, dikarakterisasi sebelum dimasukkan ke dalam Quantum Particle Swarm Optimization untuk optimalisasi. Tujuan optimalisasi Quantum Particle Swarm Optimization adalah untuk mencapai rentang frekuensi sinyal dengan nilai daya maksimum rata-rata. Untuk perancangan filter bandpass, rentang frekuensi yang diperoleh dari optimasi Quantum Particle Swarm Optimization ini digunakan sebagai referensi. Range frekuensi 9.9 Hz hingga 13 Hz dan 15.99 Hz hingga 30 Hz memberikan kondisi optimal. Rancangan filter didasarkan pada range frekuensi hasil optimasi dan nilai komponen R1, R2, dan R3 masing-masing 5.1M?, 10,2 M?, dan 1M? dengan C1=C2=0.01?F untuk frekuensi 9,9 Hz hingga 13 Hz, dan nilai 1,2M?, 2,4 M?, dan 1M? masing-masing dengan C1=C2=0.01?F untuk frekuensi 15,99 Hz hingga 30 Hz.
Referensi
Fang, W., Sun, J., Ding, Y., Wu, X., & Xu, W. (2010). A review of quantum-behaved particle swarm
optimization. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 27(4), 336–348. https://doi.org/10.4103/0256-4602.64601
Flori, A., Oulhadj, H., & Siarry, P. (2022). Quantum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization. Computational Optimization and Applications, 82(2), 525–559. https://doi.org/10.1007/S10589-022-00362-2/METRICS
Luitel, B., & Venayagamoorthy, G. K. (2010). Particle swarm optimization with quantum infusion for system identification. Engineering Applications of Artificial Intelligence, 23(5), 635–649. https://doi.org/10.1016/J.ENGAPPAI.2010.01.022
Mikki, S. M., & Kishk, A. A. (2006). Quantum particle swarm optimization for electromagnetics. IEEE Transactions on Antennas and Propagation, 54(10), 2764–2775.
https://doi.org/10.1109/TAP.2006.882165
Mundy-Castle, A. C. (1957). The electroencephalogram and mental activity. Electroencephalography and
Clinical Neurophysiology, 9(4), 643–655. https://doi.org/10.1016/0013-4694(57)90085-8
Otniel Windrayadi, F., Rahmatullah, D., Winarno, I., Teknik Elektro, J., & Hang Tuah, U. (2018).
Optimasi Power System Stabilizer (PSS) pada Generator Multi Mesin Untuk Mengurangi Osilasi
Menggunakan Particle Swarm Optimization (PSO). SinarFe7, 1(1), 154–163.
https://journal.fortei7.org/index.php/sinarFe7/article/view/164
Petersén, I., & Eeg-Olofsson, O. (1971). The development of the electroencephalogram in normal
children from the age of 1 through 15 years. Non-paroxysmal activity. Neuropädiatrie, 2(3), 247–304. https://doi.org/10.1055/S-0028-1091786/BIB
Siuly, S., Li, Y., & Zhang, Y. (2016). Electroencephalogram (EEG) and Its Background. 3–21.
https://doi.org/10.1007/978-3-319-47653-7_1
Subha, D. P., Joseph, P. K., Acharya U, R., & Lim, C. M. (2010). EEG signal analysis: a survey. Journal of
Medical Systems, 34(2), 195–212. https://doi.org/10.1007/S10916-008-9231-Z/METRICS
Sun, J., Xu, W., & Liu, J. (2005). Parameter Selection of Quantum-Behaved Particle Swarm
Optimization. Lecture Notes in Computer Science, 3612(PART III), 543–552.
https://doi.org/10.1007/11539902_66
Tharwat, A., & Hassanien, A. E. (2019). Quantum-Behaved Particle Swarm Optimization for
Parameter Optimization of Support Vector Machine. Journal of Classification, 36(3), 576–598.
https://doi.org/10.1007/S00357-018-9299-1/METRICS
Wulansari, R., Contesa Dajamal, E., Darmanto Jurusan Informatika, T., Mipa, F., & Jenderal Achmad Yani Jl Terusan Sudirman, U. (2016). Klasifikasi Sinyal EEG terhadap Rangsangan Suara
Menggunakan Power Spectral Density dan Multilayer Perceptron. Prosiding Sains Nasional Dan Teknologi, 1(1). https://doi.org/10.36499/PSNST.V1I1.1521.
Yang, S., Wang, M., & Jiao, L. (2004). A quantum particle swarm optimization. Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, 1, 320–324.
https://doi.org/10.1109/CEC.2004.1330874
Zhou, N. R., Xia, S. H., Ma, Y., & Zhang, Y. (2022). Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy. Quantum Information Processing, 21(2), 1–23. https://doi.org/10.1007/S11128-021-03380-X/METRICS
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Jurnal Studi Multidisiplin Qomaruna
Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Works in this journal are licensed under a Creative Commons Attribution 4.0 International License. Based on the license terms, users are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.